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Abstract

A putative driver of global amphibian decline is the panzootic chytrid fungus Batrachochytrium dendrobatidis (Bd). While Bd
has been documented across continental Africa, its distribution in West Africa remains ambiguous. We tested 793 West
African amphibians (one caecilian and 61 anuran species) for the presence of Bd. The samples originated from seven West
African countries - Bénin, Burkina Faso, Côte d’Ivoire, Ghana, Guinea, Liberia, Sierra Leone - and were collected from a variety
of habitats, ranging from lowland rainforests to montane forests, montane grasslands to humid and dry lowland savannahs.
The species investigated comprised various life-history strategies, but we focused particularly on aquatic and riparian
species. We used diagnostic PCR to screen 656 specimen swabs and histology to analyse 137 specimen toe tips. All samples
tested negative for Bd, including a widespread habitat generalist Hoplobatrachus occipitalis which is intensively traded on
the West African food market and thus could be a potential dispersal agent for Bd. Continental fine-grained (30 arc seconds)
environmental niche models suggest that Bd should have a broad distribution across West Africa that includes most of the
regions and habitats that we surveyed. The surprising apparent absence of Bd in West Africa indicates that the Dahomey
Gap may have acted as a natural barrier. Herein we highlight the importance of this Bd-free region of the African continent -
especially for the long-term conservation of several threatened species depending on fast flowing forest streams (Conraua
alleni (‘‘Vulnerable’’) and Petropedetes natator (‘‘Near Threatened’’)) as well as the ‘‘Critically Endangered’’ viviparous toad
endemic to the montane grasslands of Mount Nimba (Nimbaphrynoides occidentalis).
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Introduction

Amphibian populations are declining in many regions of the

world [1]. This is due to a number of causes. Besides the main

contributors, like destruction, alteration and fragmentation of

habitats, an often suggested cause is a fungal pathogen of the order

Chytridiales (Batrachochytrium dendrobatidis Longcore et al., 1999 -

hereafter referred to as Bd) which induces the disease chytridio-

mycosis. The link between declining populations and Bd has been

subject to a number of reviews [2,3,4,5,6,7,8]. So far it has been

responsible for declines in Australia [9,10,11], New Zealand [12],

Central America [13,14,15,16,17,18], North America [19,20,21]

and Europe [22]. Bd has also been detected in many other regions

(see [23] for the most recent worldwide compilation), but not

associated with declines.

Currently African records are widespread in southern and

eastern Africa, including eastern parts of the Democratic Republic

of Congo. These are complemented by very recent additions from

Nigeria [24,25,26], Cameroon [27,28] and Gabon [29] (Fig. 1). So

far no information has been reported about the pathogen’s

presence in West Africa. In addition to investigating the

pathogen’s presence with molecular or histological methods, we
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infer the likelihood of Bd occurrences using environmental niche

modelling (ENM). ENM models the Grinnellian niche measured

by scenopoetic variables [sensu 30]. This tool has been shown to

contribute significantly to our understanding of current species

distributions [e.g. 30,31,32] and has already been used to model

the distribution of pathogens, including that of Bd [e.g.

33,34,35,36,37,38,39,40]. Potential distributions predicted by the

models may then guide future surveys aimed at detecting the focal

organism [e.g. 41,42] and preventive measures.

Herein, we compare extensive field surveys for Bd based on

samples from seven West African countries with results of detailed

African continental ENMs, which include the most recent Bd

positive records. Our findings are discussed with a special focus on

common species and on species which are potentially highly

threatened by the fungus because of their high niche overlap with

Bd.

Figure 1. Map of confirmed records of Bd on the African continent (black dots). Grey transparent dots represent the West African localities
with negative Bd records. The hollow black circles indicate Bd positive localities [87] which were not used for modelling. The three red colours
represent the geographical extent of three different models, predicting the potential distribution of Bd. Modelling is based on the conditions of sites
with confirmed presence of the pathogen (light red = maximum; red = mean; dark red = minimum; for niche parameters see Table 2).
doi:10.1371/journal.pone.0056236.g001

No Evidence of Chytrid in West Africa
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Materials and Methods

Ethics Statement
All work complies with the guidelines for the use of live

amphibians and reptiles in field research compiled by the

American Society of Ichthyologists and Herpetologists (ASIH),

The Herpetologists’ League (HL) and the Society for the Study of

Amphibians and Reptiles (SSAR). For ethical issues concerning

the toe clips we refer to [43], we followed recommendations

therein.

Permits were issued by the respective companies, institutions,

ministries as well as government bodies: Bénin - Faculté des

Sciences Agronomiques, Département d’Aménagement et de

Gestion de l’Environnement, Laboratoire d’Ecologie Appliquée,

Université d’Abomey-Calavi on behalf of the Centre National de

Gestion des Réserves de Faune and the Ministère de l’Environne-

ment et de la Protection de la Nature; Burkina Faso - Unité de

Formation et de Recherche en Sciences de la Vie et de la Terre,

Département de Biologie et Physiologie Végétales, Laboratoire de

Biologie et Ecologie Végétales, Université de Ouagadougou on

behalf of the National Centre of Scientific and Technology

Research of Burkina Faso; Côte d’Ivoire - Ministère de

l’Environnement et du Cadre de Vie, Direction de la Protection

de la Nature; Ministre de l’Enseignement Supérieur et de la

Recherche Scientifique, Direction de la Recherche; Ministère de

la Construction et de l’Environnement, Direction de la Protection

de la Nature; Ministère de l’environnement et de la Forêt,

Direction de la Protection de la Nature; Société de Développe-

ment des Forêts; Ghana - Wildlife Commission of the Forestry

Commission of Ghana; Guinea - Ministère de l’Agriculture, de

l’Elevage, de l’Environnement et des Eaux et Forêts; Ministère de

l’Education Nationale et de la Recherche Scientifique, Direction

Nationale de la Recherche Scientifique et Technologique; Centre

de Gestion de l’Environnement du Nimba-Simandou; Projet des

Nations Unies de Développement; Comités Villageois de Surveil-

lance; Ministère du Développement Durable et de l’Environne-

ment, Direction Nationale des Forets et Faune; Société des Mines

de Fer de Guinée; Liberia - Forestry Development Authority,

Office of the DMD/Forest Conservation; Arcelor-Mittal; Sierra

Leone - Ministry Agriculture, Forestry and Food Security, Forests

Conservation and Wildlife Unit, Wildlife Conservation Forestry

Division.

The ‘‘Bundesamt für Naturschutz’’, Bonn issued CITES import

permits (Nimbaphrynoides o. occidentalis; E-3117/07 and E-4074/08;

Nimbaphrynoides o. liberiensis; E-4509/07), the ‘‘Le Directeur

Nationale de la Protection de la Nature’’ (2007/00314) and

‘‘L’organe de Gestion CITES Guinée’’ (2008/0049) in Guinea

(Nimbaphrynoides o. occidentalis) and the ‘‘Forestry Development

Authority’’ in Liberia (01, Nimbaphrynoides o. liberiensis) the

respective CITES export permits.

Sampling techniques
Anurans were detected via visual, acoustic or opportunistic

searches during the rainy seasons 1993, 1995, 2001 to 2005 and

2009 to 2011. Terrestrial and arboreal species were captured by

hand and aquatic species, notably from the family Pipidae, by net.

Digging was performed to sample fossorial species such as

caecilians. Overall we screened 793 amphibians from 62 species

(see Appendix S1 & S2) which originated from 64 sites throughout

the region (Table 1) as well as live individuals destined for export

at Accra airport, Ghana (Figs. 1, 2a & b).

We used two methods: (i) epithelial swabbing and (ii) histology

of phalanges to sample for Bd [44,45]. Cotton swabs were utilised

to brush the Bd sensitive areas of each individual live frog including

the ventral surface of each thigh, hind foot and pelvis. Swabs were

either placed in 95% ethanol or sprayed with ethanol and stored

dry or stored dry directly and kept away from heat [46]. Toe clips

were obtained from preserved adult frogs. A piece of dorsal skin

was cut one third from the anterior tip of the body and stored in

ethanol from preserved caecilians. Toe and skin samples were

fixed and stored in 95% ethanol. The samples were analysed at the

Museum für Naturkunde, Berlin (MfN; 78 swabs), the North-West

University, Potchefstroom (NWU; 105 swabs; 137 toe tips for

histology), the University of Washington (UW; 103 swabs) and the

Institute of Zoology, London (IoZ; 372 swabs).

Voucher specimens and preserved individuals were euthanized

(using either MS-222 or chlorobutanol), preserved in 75% ethanol

and are deposited at MfN (134 specimens) or the Burke Museum

of Natural History and Culture at UW (103 specimens).

Laboratory techniques
DNA was extracted with DNeasy extraction kits (Qiagen)

following manufacturers protocol. DNA extractions were stored at

280uC (MfN, NWU, IoZ) or 4uC (UW) prior to analysis. At all

laboratories, standards of known zoospore concentrations (100, 10,

1 and 0.1 zoospore genomic equivalents (IoZ, NWU, UW)) or ITS

copies (169 copies per zoospore (MfN)) and a negative control

were used in each diagnostic assay.

At MfN, NWU and IoZ, DNA was analysed using Bd-specific

primers (ITS-1/5.8-S) and following the RT-qPCR protocol of

Boyle et al. [47]. At IoZ, bovine serum albumin (BSA) was included

in the Taqman mastermix to minimise inhibition of the PCR [48].

The PCR profile was: 5 min at 96uC followed by 50 cycles of 10 s

at 96uC and 1 min at 60uC. At all laboratories, a positive result

consisted of a clearly sigmoid curve in duplicate samples.

At UW, DNA was analysed by conventional PCR [49] and

visualised on a 1.5% agarose gel. To verify that DNA extractions

were successful, frog 16 s rRNA (16S) was amplified for each

sample using standard amphibian primers [50]. As an additional

positive control, the universal fungus primers ITS-4/ITS-5 [51]

were used to amplify DNA from various (non-Bd) chytrid genera

that were extracted from epithelial swabs. The presence/absence

of Bd was tested by using the Bd-specific primers Bd1a/Bd2a [49].

Toe clips were dehydrated in an alcohol series (70%, 96% and

26100% alcohol), elucidated with xylene and infiltrated with

paraffin wax at 60uC. Following the wax infiltration the tissues

were embedded in paraffin wax blocks using a SLEE MPS/P2

embedding centre and sectioned at 6 mm with a Reickert-Jung

2050 automated microtome. Sections were stained with Mayer’s

haematoxylin and counter stained with eosin. Slides were then

examined under a Nikon Eclipse E800 compound microscope for

the presence of Bd using the criteria described in Berger et al.

[52,53].

Environmental Niche Modelling
ENM is a statistical modelling tool where a priori set algorithm

searches relationships within the data (as opposed to process based

modelling). Our ENM relies on maximum enthropy principles

(using the software Maxent 3.3.3.k [54,55,56]). The approach

basically compares the values of the variables at the sites where a

species is present against a background sampled from sites with no

presences. Maxent uses machine learning to maximise the entropy

function; but see Elith et al. [32] for a detailed description of the

statistics. Despite the number of available algorithms, Maxent is

one of the best ENM techniques when using presence-only data

[e.g. 57,58].

Herein we report absence of Bd. Nevertheless, the true absence

of organisms is in general difficult to ascertain (e.g. compare the

No Evidence of Chytrid in West Africa
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findings from [59] and [29]). Therefore we applied the most

conservative method using only confirmed presences from the

African continent with a high spatial certainty for our ENMs

(n = 112 reported records; see Appendix S3). The aim was to

model the likely geographic distribution of Bd and strictly avoid

type II errors.

We used 17 environmental parameters on a 30 arc second grid

(which equals roughly 1 km2) for the whole African continent as

variables in our ENM. All parameters were continuous (not

categorical) and are classified into three broad categories: climate,

environment and altitude. The climate variables comprised ten

parameters, all averaged from 1950 to 2000. Five environmental

parameters were obtained from two satellite imagery data sets with

different spectral sensitivities (SPOT4 & MODIS). Altitude was

converted into two parameters calculated from a radar derived

data set (SRTM) (see Table 2).

In total we calculated 100 ENMs. Models were replicated using

sub sampling. For each model, points were randomly allocated

into two groups: 70% (n = 79) for model training and 30% (n = 33)

for model testing. From these 100 models three average models

were derived: maximum, mean and minimum predictions gained.

The maximum, mean and minimum models used the average 10

percentile thresholds over all 100 models to gain three binomial

models. Models were validated via the area under the curve (AUC)

criterion, which refers to the receiver operating characteristic

Figure 2. Detailed maps of West Africa. From top to bottom, depicting the most western positive records of Bd (black) and the negative records
(transparent grey) (2a). Figure 2b indicates in white transparent lines the transport system (roads) of the region. If Bd is transported via humans, the
area around Accra (Ghana) is most likely to be the point of introduction (well connected via transportation routes and highly suitable environment).
Further shown (2c) are the extents of the potentially forest regions (green) with the Upper Guinea Forests west of the Dahomey Gap [after 131,2a]. In
2d the known point localities of Conraua alleni (transparent yellow), Petropedetes natator (transparent blue) (light green = overlapping localities), and
Nimbaphrynoides occidentalis (dark green) are depicted.
doi:10.1371/journal.pone.0056236.g002

Table 1. Number of amphibian samples per West African
country tested for the presence of Bd.

Country Swab Toe/Skin Total

Bénin 120 13 133

Burkina Faso 0 3 3

Côte d’Ivoire 29 26 55

Ghana 254 36 290

Guinea 243 44 287

Liberia 10 4 14

Sierra Leone 0 11 11

Total 656 137 793

swab = molecular investigation of swab sample; toe/skin = histological
examination of toe tips (anurans) and skin pieces (caecilians).
doi:10.1371/journal.pone.0056236.t001

No Evidence of Chytrid in West Africa
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(ROC) curve. This measurement is threshold-independent and

commonly used for such models (e.g. [57]).

Results and Discussion

Despite our extensive sampling on a species and geographical

level, we did not detect any evidence of Bd in the investigated sites,

neither by molecular (at least, any strain known to cause severe

chytridiomycosis [60]) nor by histological investigations. Hence,

the only region in sub-Saharan Africa without any confirmed

records remains the Upper Guinea Forests and the surrounding

savannahs.

One positive Bd record from Ghana [61] is often cited in the

literature and has been used for ENMs [33,34,37]. However, it

was excluded from our ENM analysis because the specimen stems

from the pet trade, has an unknown origin and was tested after

being imported into the US. Thus, the specimen could have

contracted the pathogen from anyone of a number of possible

sources within the trade pathway. Further support for our decision

stems from finding that infections at the population level are highly

dependent on the density of individuals [62,63]. Crammed

conditions are common in the pet trade and prevalence is high

in traded amphibians [64,65,66,67]. In addition, no other Bd

record was reported from Ghana (n = 292, this paper).

Continental Modelling
In contrast to these findings our ENMs show that Bd could

potentially occur in West Africa. So far Bd has never been

recorded west of Okomu National Park, which lies east of Lagos,

Nigeria (see Figs. 1 & 2b). As the fungus prefers moist and

comparatively cooler environments [see

68,69,70,71,72,73,74,75,76], we hypothesise that the Dahomey

Gap, a naturally non-forested stretch ranging from eastern Ghana

to western Nigeria, consists of unsuitable habitats and therefore

provides a distributional barrier (Fig. 2c). However, this hypothesis

must be treated cautiously because Bd can survive outside its

preferred temperature range [69,77] and could therefore cross the

Dahomey Gap. In addition a number of other factors may

influence its persistence as well (e.g. life-history stage at exposure

[78,79], host immunity [80], host stress levels [81] and anthro-

pogenic influences [82,83]).

Overall the ENMs performed well, with a mean training AUC

of 0.97960.002 and testing AUC = 0.96760.010. All 17 selected

variables contributed to the models. The highest contribution

came from the ‘‘minimum precipitation’’ (prec_low 35.3%),

followed by the ‘‘variance in elevation’’ (srtm_v 22.6%) and the

‘‘lowest value of the maximum temperatures’’ (tmax_low 17.5%).

Jackknife testing revealed ‘‘highest value of the maximum

temperatures’’ (tmax_high) as the variable with the greatest

information content when used alone (for details see Appendix S4).

Until now no fine-grained continental ENM existed, only

coarser ones (2.5 arc minutes) on a global scale [see 37,40]. Our

models showed that Bd could occur in the investigated region but

not as widespread as in some other parts of Africa. Only a few

West African areas were predicted as suitable for Bd. These are

primarily the comparatively wetter or higher altitude areas of the

Table 2. Environmental parameters used in the environmental niche modelling (ENM) approach with a short description of the
parameter and the source of the original data.

No. Category Parameter Description Original source

1 climate tmax_low lowest value of the maximum temperatures [132]

2 climate tmax_high highest value of the maximum temperatures [132]

3 climate tmax_std standard deviation the maximum temperatures [132]

4 climate tmin_low lowest value of the minimum temperatures [132]

5 climate tmin_high highest value of the minimum temperatures [132]

6 climate tmin_std standard deviation of the minimum temperatures [132]

7 climate prec_high highest precipitation value (wettest month) [132]

8 climate prec_low lowest precipitation value (driest month) [132]

9 climate prec_std standard deviation of the precipitation [132]

10 climate prec_sum total annual precipitation [132]

11 environment glc2 vegetation derived from the near-infrared (0.78–0.89 mm)
wavelength of the SPOT4 satellite

[133]

12 environment glc3 vegetation derived from the red (0.61–0.68 mm) wavelength
of the SPOT4 satellite

[133]

13 environment bare percentage of bare ground (MODIS) [134]

14 environment herb percentage of herbaceous ground cover (MODIS) [135]

15 environment tree percentage of woody vegetation (MODIS) [136]

16 altitude srtm_c elevational contrast calculated from the SRTM30 dataset using
a 363 moving window

[137]

17 altitude srtm_v elevational variance calculated from the SRTM30 dataset using
a 969 moving window

[137]

Parameters 1–10, calculated in two steps: i) an average (from the years 1950 to 2000) for each month (January to February), thus leading to 12 averages; (ii) calculation
as detailed in the main text. Parameters 11–12: calculated from the annual average of the year 2000. Parameters 13–15: extracted from the 500 m MODIS vegetation
continuous fields dataset, which are derived from monthly composites that are in turn derived from eight day composites. All 7 bands were used and smoothed via a
464 rectangular neighbourhood function. Parameters 16–17: after calculation data were ln-transformed and multiplied by 10 to assure compatibility with other
environmental parameters.
doi:10.1371/journal.pone.0056236.t002

No Evidence of Chytrid in West Africa
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Upper Guinea forests (see Fig. 2a). Our modelling results show a

picture different to the recent global modelling approaches for Bd

[33,35]. The main differences are that large areas in Angola,

Namibia and Zambia predicted by Ron [33] and Rödder et al. [35]

are not predicted in our approach. Other differences concern

areas in western Africa where our ENM predict a smaller range

compared to Ron [33] and Rödder et al. [35]. Interestingly large

areas in Ethiopia are predicted to be highly suitable for Bd by all

approaches. Similarly, a narrow region in northern Africa, ranging

from Tunisia over Algeria to Morocco was predicted. ENMs for

both regions were recently confirmed by respective positive Bd

records [84,85]. The causes for the differences between our ENMs

and previous ones are complex. The models differ substantially in

the parameter setting of the algorithm, their resolution, the points

used, and the environmental parameters.

The origin of Bd is still unknown. One hypothesis was that the

pathogen originated in Africa and spread globally via the

commercial trade of clawed frogs (Pipidae: Xenopus spp.).

Histological and molecular analyses [86,87], detailed trade history

[88] and known occurrences at that time [89,90,91] supported this

hypothesis [see also 29,92]. In addition the oldest known record

originated from Cameroon, more specifically Bd was detected in a

museum voucher of Xenopus fraseri, collected in 1933 from lowland

rainforest [87]. Now an older record from Japan, dated to 1902

[93], challenges the hypothesis that Bd originated in Africa.

However, there is more than one lineage of Bd [60,93,94] and one

or more pathogenic lineages could have spread out of Africa.

This leads to the question of how Bd is transported from one location

to another. Trade of live animals is commonly suggested as the most

likely means of dispersal [4,12,64,60,65,86,94,95,96,97,98,99]. How-

ever, recent findings support the notion that other dispersal vectors are

also possible such as reptiles, birds or mammals [100,101,102].

Potential Error Sources
We herein did not find any evidence for Bd in West Africa.

Several explanations are plausible why Bd was not recorded in our

study area. Either (i) sampling was flawed if Bd follows seasonal

patterns and we sampled during a low prevalence cycle [e.g.

72,103] or (ii) species were sampled whose ecological niches do not

or only slightly overlap with that of Bd [e.g. 73,104,105]. Other

possibilities are (iii) that sampling in the field failed, e.g. due to

blemished preservation [e.g. 46,106] or (iv) poor diagnostic assays,

e.g. presence of PCR inhibitors [e.g. 107]. Although possible, it is

unlikely that Bd was not detected due to aforementioned errors.

Seasonality might be a problem. We sampled mainly during the

wet season and even in highly seasonal Bd infected regions, positive

confirmation is possible year round [108] though not everywhere

[68,73,103,109].

We sampled species with ecological requirements strongly

overlapping with the fungus, including avoiding xeric species such

as Amietophrynus xeros or Tomopterna cryptotis. Many of the sampled

genera have previously been shown to be infected with Bd in other

African regions (e.g.: Amietophrynus (mean prevalence 21.05%;

Bayesian credible interval 11.13–36.46%), Hyperolius (39.51%;

35.26–43.92), Leptopelis (28.57%; 22.03–36.18%), Petropedetes

(11.11%; 15.17–65.11%), Phrynobatrachus (17.65%; 9.63–30.32%),

Ptychadena (26.26%; 20.36–33.17%), Xenopus (3.35%; 2.35–4.77%)

[calculated from 26,27,28,29,85,86,90,91,92]).

Thirdly, anuran tissue samples, from which DNA was

successfully extracted, were preserved following the same proce-

dures as Bd-swabs and toe clips. In addition all methods used in

this paper have already detected Bd in samples from other regions

[see method section and 28,86].

Lastly, amplification of DNA from frog 16 s and fungal ITS

regions for the samples at UW (n = 103) demonstrate that swabbing

was effective (see S2). In terms of numbers of individuals and

geographical scale, our sample size is also large enough to make a

confident diagnosis. All the above mentioned facts support our

conclusion that our sampling is representative for West African

amphibians and that Bd is highly likely to be absent in western Africa.

Conservation implications
Though Bd has been detected in a number of species with

different ecological niches, most populations which are adversely

affected by the fungus are from higher altitudes and inhabit mostly

flowing streams [see above and 105,110]. Therefore three West

African species are of major conservation concern with regards to

Bd infection: Nimbaphrynoides occidentalis (samples tested herein:

n = 62), Conraua alleni (n = 86) and Petropedetes natator (n = 158). The

Nimba toad, N. occidentalis, is the only truly viviparous anuran

species and is restricted to narrow ranges of high altitude

grasslands of the Nimba Mountains, which are situated at the

border between Guinea, Liberia and Côte d’Ivoire [111,112 and

citations therein]. This species is listed as ‘‘Critically Endangered’’

because of its very small distribution range and the decline of

suitable habitats [113]. C. alleni and P. natator are frogs occurring in

streams, mostly in mountainous forest habitats. They are listed as

‘‘Vulnerable’’ and ‘‘Near Threatened’’ respectively [113].

The geographic distributions of all three species show a high

overlap with the potential geographic ENM distribution of Bd.

The models highly predict the occurrence of Bd in areas where all

three species can be found (Fig. 2d). The fact that N. occidentalis is

independent of flowing streams does not necessarily render this

species less susceptible to Bd, as Bd has already been detected in at

least three African species without aquatic larval stages: Necto-

phrynoides asperginis [114,115] (though note that the species lived

(extinct in the wild) in the spray zone of Kihansi River Gorge,

Tanzania), Arthroleptis sp. (in Gabon [29] and in Malawi [116]) and

the suspected direct developer Balebreviceps hillmani (in Ethiopia

[85]). Bd is also suspected to be responsible for the extinction of

four other direct developing species ( = no aquatic larval stage):

Craugastor milesi (from Honduras), Rheobatrachus silus, R. vitellinus, and

Taudactylus diurnus (from Australia). Though heavy logging

occurred in the areas of distribution of the Australian species as

well and all four species are associated with water (C. milesi adults

live along rivers; R. silus & R. vitellinus have aquatic adults; T.

diurnus lays eggs in water) [1,113]. Therefore, we conclude that Bd

could potentially occur in western Africa due to the availability of

suitable habitats and susceptible hosts.

Our sampling covers a representative subsample of West

African species. This is not only due to the number of species

sampled but also due to the fact that two species have been

intensively sampled, which are habitat generalists (S1) and have a

wide distribution, i.e. Phrynobatrachus latifrons (n = 79) and Hoploba-

trachus occipitalis (n = 67) [117]. The latter species is also the major

traded species in local and regional food markets and is therefore

transported over long distances [118]. The species is also

transported across the Dahomey Gap, more specifically from

north-eastern Bénin to south-western Nigeria and probably even

further eastwards [118,119]. Thus the possibility that Bd will be

spread from Nigeria to the west is reduced.

We will briefly highlight the most likely entry points for Bd from

Central Africa to West Africa. Looking at the major transportation

routes, a human Bd transport distribution will in all likelihood first

be detected in the region around Accra (Fig. 2b). A highway exists

parallel to the coast and connects the major cities (Lagos, Nigeria;

Porto Novo & Cotonou in Bénin, Lomé, Togo; Accra, Ghana).

No Evidence of Chytrid in West Africa
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Environmental suitability for Bd is low in Bénin and Togo, making

Ghana a more likely entry point for Bd. Railways exist but mainly

in north-south directions and rarely cross international borders.

They operate also on a rare and infrequent basis and are not a

major means of transportation. The introduction of Bd into West

Africa via animate vectors is much more difficult to predict. The

most likely entry point for them would be either the highlands of

Togo or the Atewa range in Ghana (Fig. 2b), because they are

closest to the Bd positive localities in Nigeria (Okomu NP) and are

environmentally suitable for Bd.

Every effort has to be made to ensure that Bd will not invade

western Africa, especially because threats are additive [e.g. 8] and

fragmentation has already affected the region heavily [see

120,121,122]. The situation is similar to Madagascar where Bd

has also not been detected [86,123,124]. For environmental work

in the region (e.g. consultant, scientific) we strongly recommend

buying new equipment. This has to include the disinfection of

materials and equipment transported from Bd positive to Bd

negative regions, especially to Bd sensitive regions for example by

mining companies as these sensitive areas often coincide with

proposed mining areas [see 125,126,127,128,129]. The same

precautionary measures should apply for the ecotourism industry

[see 130]. Only through acute scientific observation, greater

collaboration between conservation and all sectors of industry and

commerce can some measure of control be achieved over the

spread of wildlife pathogens such as Bd.
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