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CHAPTER 8 

 

Effect size and Group overlapping 

 

8.1    Introduction 

 

When one wants to compare two populations with respect to a continuous 

response variable (as, for example, IQ, diastolic blood pressure, test marks of a 

person), the standardized difference δ  is an appropriate effect size index (see 

Chapter 4).  The quantity 2
pbρ , i.e., the proportion variance attributed to 

population membership (see Chapter 5), can also be used as an index.  In the 

case where more than two populations are compared, one can use δ  for 

contrasts and 2η  as a generalization of 2
pbρ  as effect size-indices (see Chapter 

6).  All of these indices are based op the assumption of homogeneity of 

variances of the populations and, with the exception of the indices 

1 2, , ,m∆ ∆ ∆
  

gδ and cδ  (see paragraph 4.3), there are no other effect size-indices 

available when the variances of the populations are heterogeneous. The same 

problem also exists when one looks at multivariate populations:  all the indices 

(as discussed in Chapter 7) assume that the populations have the same 

covariance matrices. 

 

A possible solution would be to obtain an index which is based on population 

overlapping.  In Figure 8.1 the shaded area is the overlapping between the two 

population distributions A and B.  Note that the populations need not necessarily 

be normally distributed with equal variances.  Clearly the overlapping is inversely 

proportional to the difference in location of the two distributions (for example 

−B Aµ µ ). This means that the non-overlapping of the population distributions is 

large then Aµ  and Bµ  differ greatly, and it is small if the population means do not 

differ very much. 
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Figure 8.1: Overlapping van two population distributions 

 

 

 

In this chapter we will discuss how the overlapping between populations can be 

converted into an effect size index.  The case involving homogenous variances 

for two and more populations and with one and more variables will be explored.  

However, since effect size indices already exist for these cases, we will attempt 

to determine the relationship between the new indices and the existing indices. 

Thereafter the index in the cases of unequal variances or dissimilar covariance 

matrices will be discussed.  As a result, we will first need to look at the 

classification of observations and the definition of a hit rate. 

 

 

8.2 Distance and classification 

 

Suppose that population g  has a p -variable mean vector or centroid 

gµ ( )1g 2g pgµ ,µ ,...,µ=  and covariance matrix gΣΣΣΣ . The so called Mahalanobis 

distance of a vector of observations, ux ( )1 2, ,...= sx x x , belonging to an object u  

(e.g., a person) from the centroid of g  can then be written as 

                     ( ) ( )− ∆ = − − 

1
21 'ug u g g u gx µ x µΣΣΣΣ                                                 (8.1) 

In the univariate case with p  = 1, this reduces to  
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                     u g
ug

g

x µ

σ

−
∆ = ,   

where gµ  and gσ  are the mean and SD of population g . 

 

Now, to classify ux  as belonging to one of the k  populations, we make use of 

predictive discriminant analysis (or PDA).  According to Huberty (1994:45) the 

purpose of PDA is as follows: 

 

Suppose that we draw random samples from k  populations of sizes 

=gn , g 1,...,k ,
 

 which are made up of measurements on each of the g
g

N n
 

=  
 
∑  

objects.  By using this N  ×  p  data matrix, we want to determine from which one 

of the k  populations it is the most likely to draw the ( N  + 1)-th object. 

To determine the population from which a forthcoming object, with observed 

value ux , is drawn, it is assumed that the populations each have a multivariate 

normal distribution. With the aid of these assumptions it is now possible to make 

use of maximum-likelihood methods.  In Huberty (1994:  chapter IV) the 

background of this method is discussed in detail.  However, for the purposes of 

this manual the discussion in the following paragraph will be sufficient. 

 

8.2.1 Prior probabilities 

 

Let gπ  denote the proportion of objects in the k  populations which come from 

population g .  Thus, if an object is randomly chosen from all the populations, 

then gπ  is the probability that it came from population g .  This probability is 

called prior or “a priori” because it is known beforehand, i.e., before any samples 

are drawn. 

 

If the k  populations’ sizes are not known, gπ  can be obtained in two ways:   
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(a) Choose it according to good judgement and past experience:  the 

researcher knows from experience that, for example, objects from 

population 1 are twice as common those from population 2.  In this case 

he/she would choose 2
31π =  and = 1

32π . 

(b) Make the assumption that the samples’ sizes are proportional to the 

population sizes, then we can use = =g g gπ p n / N . 

(c) Choose 1
kgπ = , i.e., equal for all k  populations. 

 

8.2.2 Equal population covariance matrices   

 

If we assume that 1 2 ... ,= = = =kΣ Σ Σ ΣΣ Σ Σ ΣΣ Σ Σ ΣΣ Σ Σ Σ  the distance in (8.1) becomes ug
∗∆ , 

where gΣΣΣΣ  is replaced with ΣΣΣΣ .  This distance is estimated by: 

                        ugD∗ ( ) ( )− = − − 

1
21 'u g u gx x S x x                                              (8.3) 

where gx  and S are the sample centroid and pooled sample covariance matrix 

respectively.  By using maximum likelihood methods, the following classification 

rule is obtained (Huberty, 1994:  61-62): 

 

Assign object u  to population g  if 

                 ∗ ∗− < −2 2
ug g ug' g 'D 2 n( p ) D 2 n( p )ℓ ℓ ,                                                      (8.4) 

for all ≠g g' . 

 

This is known as the linear classification rule . 

 

8.2.3 Unequal population-covariance matrices  

 

Here ug∆  is estimated by: 

                       ugD = ( ) ( )− − − 

1
21 'u g g u gx x S x x ,                         (8.5) 
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where gS   is the sample covariance matrix of population g .  Maximum likelihood 

methods in this case produces the quadratic classification rule: 

 

Assign object u  to population g   if: 

                  + − < + −2 2
g ug g g' g ' g 'n S D 2 n( p ) n S D 2 n( p )ℓ ℓ ℓ ℓ ,                            (8.6) 

for all ≠g g' . 

 

8.2.4 Two  univariate populations: classification with ROC- 

           analysis 

 

To classify objects in this case, methods for receiver-operating characteristic 

(ROC) curves can be utilised.  

 

Suppose that a disease or abnormality is studied and individuals are 

categorized as “positive” if they exhibit the disease or abnormality and “negative” 

otherwise. Other examples include clinical psychologists that would like to 

classify individuals as depressive or normal, or a bank that want to classify 

clients asking for loans as being potentially risky or not.  These classifications are 

typically made through the use of  “gold standard” diagnostic tests that are 

possibly expensive and/or time-consuming. If a method (also called a screening 

test) existed to identify the diseased/abnormal/risky individuals, that was simpler 

and cheaper than the “gold standard”, then it would be important to know how 

trustworthy it was as a predictor for diseased/abnormal/risky individuals. In 

further discussion we will refer to the population of sick (S) and the non-sick (N) 

individuals for the individuals that have a disease or not, have an abnormality or 

not, or are considered risky or not. Typically the measurements made for these 

screening tests produce a continuous value (i.e., a value that varies over a 

certain interval) and a cut-off or threshold value is often used to classify 

individuals, e.g., values above the threshold value indicate the presence of a 

disease, while values below it indicate the absence of the disease.  Figure 1 
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provides a graphical representation of the distributions of populations S and N’s 

screening test measurements. 

 

Figure  8.2 

 

 

 

If individuals are classified according to their actual status (according to some 

golden standard) as well by the screening test, then it produces the following 2x2 

– frequency table: 

 

 Actual status  

Screening test Sick ( )S  Not-sick )(N  Total 

+ 

- 

A (true pos.) 

C (false neg.) 

B (false pos.) 

D (true neg.) 

A + B (test +) 

C + D (test -) 

Total A + C (sick) B + D (not-sick) N=A+B+C+D 
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In this table there are A  sick individuals that reacted positively to the screening 

test.  If it is expressed as a proportion of all the sick individuals ( )CA+ , then it 

gives the sensitivity, i.e., 

Sensitivity  =  
CA

A

+
 ,       (8.7) 

the proportion of correctly classified positives (i.e., where sick individuals test 

positively). 

Similarly, there are D  individuals correctly classified as not-sick; when this 

is expressed as a proportion with respect to the total not-sick individuals it is 

called the specificity, i.e., 

Specificity  = 
DB

D

+
 ,       (8.8) 

the proportion of correctly classified negatives (i.e., where not-sick individuals 

test negatively). 

 A good screening test should have a high sensitivity as well a high 

specificity, because the opposite would be unfavourable. That is, to classify a 

sick person as not-sick (a total of C individuals) is unfavourable; similarly it is also 

unfavourable to classify a person as being not-sick if they are sick (a total of B 

individuals). 

 In the populations (as shown in Figure 8.2) the area under the S-

distribution (sick individuals) to the right of the cut-off point denotes the sensitivity 

and the area under the N -distribution to the left of the cut-off point is called the 

specificity.  Ideally the two distributions would be completely separated and the 

cut-off point chosen such that both the sensitivity and specificity are equal to 1. 

 

Choice of the optimal cut-off point: 

 

 The ROC-curve shows, for a sequence of cut-off values ( )t , the 

relationship between the proportion of true positives ( )tp   versus the proportion 
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of false positives ( )fp .   The question now is whether or not there is an optimal 

value for t ? One method is to use the Youden index YI: 

  ( )maxΥΙ = −t tp fp  

       ( )max 1= + −t tp tn  ,                                                       (8.9) 

i.e., the maximum value of the sum of the sensitivity ( )tp  and specificity ( )tn  

minus 1.  This index is a descriptive measure of the ROC-curve.  The optimal 

value of the cut-off point t   is thus obtained when the sum tp tn+  is at its 

maximum. 

For a given t, the distribution functions for ΧN  and ΧS  are:      

( ) ( )= Ρ Χ ≤ =NF t t tn  and ( ) ( ) 1= Ρ Χ ≤ = −SG t t tp , 

           therefore it follows that 

                           ( )max 1ΥΙ = + −t tp tn  

                                                   ( ) ( )( )max= −t F t G t  .              (8.10) 

0>ΥΙ   implies that ( ) ( )tGtF ≥  for each  t , which means that  the distribution of 

SX      lies largely to the right of the distribution of NX  (see, for example, Figure 

8.2).  If   0≤ΥΙ  it means that the screening test is no better than simply 

randomly classifying  individuals as positive or negative. 

 

The estimated optimal t  can thus be found where the estimated difference 

( ) ( )tGtF
∧∧

−  is a maximum.  The following four methods for determining the optimal 

t  (denoted by *t ) are discussed by Krzanowski & Hand (2009), paragraph 9.4: 

 

(a) binormal method: 

 When F  and G  are both normal  

 N S
t

N S

t t
max

    − µ − µΥΙ = Φ − Φ    σ σ    
, 

which, after setting the first derivative to zero and solving, we get: 
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( ) ( ) ( )
( )

22 2 2 2 2 2

*

2 2

ln /− − − + −
=

−
S N N S N S N S N S N S

N S

t
µ σ µ σ σ σ µ µ σ σ σ σ

σ σ
 .             (8.11) 

 

If 222 σσσ == SN  , then ( )* ½= +N St µ µ  ,                                                        (8.12)  

i.e., the optimal value lies halfway between the means of the distributions and 

where the normal density functions intersect each other (see Figure 8.3). 

 

Figure 8.3: 

 

To estimate *t  with 
∧
*t , the estimators 

∧

Nµ , 
∧

Sµ , 
∧
2
Nσ   and 

∧
2
Sσ   are substituted in 

(8.11). 

 

(b) Transformed normal method: 

The assumption that ( )tG  and ( )tF  are normally distributed is sometimes 

unrealistic which means that, like in the estimation of the ROC-curve, an 

appropriate monotone transformation (Box-Cox transformation) can be applied to 

X  to achieve normality.  Just as the ROC-curve is invariant under monotone 

transformations, ΥΙ is also invariant. The optimal value *t  can then be 

determined as in (a) above, but on the distribution of Υ , after which it can be 

back-transformed in terms of X .     

 

(c) Empirical method: 
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F  and G  can be estimated with their empirical distribution functions 

  ( ) ( ) NN tF t n ' / n
∧

=  

             (8.13) 

  ( ) ( ) SS tG t n ' / n
∧

=  , 

where ( )A tn '  is the number of individuals from population A  such that its X  

values are smaller than or equal to t . 

The value 
∧
*t  is then the t -value in a sequence of values that makes ( ) ( )tGtF

∧∧
−  a 

maximum. 

 

(d) Kernel estimation methods: 

Here ( )tF  and ( )tG  are determined using kernel estimators of the density 

functions sf  and gf  (see the nonparametric estimation of ROC-curves discussed 

above). 

 

From the ROC-analysis the two following measures can be used as effect sizes: 

(a) the Youden-index, and (b) the area under the ROC-curve. 

 

• Youden-index: From its definition in (8.10) it is clear that YI’s value can 

vary between 0 and 1, with value 0 when the distributions of the two 

populations are identical, and value 1 when there is no overlap 

whatsoever.  

 

• Area Under the ROC-curve (AUC): Consider Figure 8.4: 
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Figure 8.4 

(a) 

 

 

(b) 

 

  

 

Figure 8.4(a) is obtained if the populations in Figure 8.2 are both normally 

distributed, population S has mean and standard deviation ,1,4 == SS σµ  and 

population N  has mean and standard deviation 0=Nµ  and  1=Nσ .  Here the 

populations are completely separated since the density function of the S 

population lies almost entirely to the right of the density function of the N  
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population.  This ROC curve illustrates the near best possible curve obtainable; 

the optimal cut-off point between the two distributions can easily be chosen.  The 

other extreme is illustrated by the diagonal line (dashed line) in Figure 8.4(b) 

where it is used to indicate the hypothetical situation where both distributions are 

assumed to be N ( )0;1  and thus indistinguishable from one another.   

In this case individuals from each population are equally likely to be classified as 

positive or negative.   

Figure 8.4(b) also illustrates a ROC-curve (solid line) that could be obtained from 

a situation similar to Figure 1; an appropriate optimal cut-off point can then be 

chosen from this graph. 

 

 If one considers Figure 8.4, it is clear that the area under the ROC-curve 

in (a) is approximately 1, in (b) it is between 0,5 and 1 in the case of the solid 

line, and exactly 0,5 in the case of the dashed line.  This “Area Under the Curve” 

is denoted by AUC and is used as a measure of the ability to discriminate 

between the distributions S and N .  Larger values of AUC indicate a greater 

discriminatory ability.  The AUC value 0,5 indicates that the one is unable to 

distinguish between S and N . 

 AUC can also be interpreted as follows:  

Suppose that an individual is randomly chosen from each of the populations S 

and N  and the screening scores are SX  and NX , then: 

    AUC = ( )NS XX >Ρ   ,                        

which means that the AUC is the probability that SX  is larger than NX .  In 

terms of Figure 8.4 this probability is close to 1 if the two populations are 

easily distinguishable (Figure 8.4(a)), whereas the probability is 0,5 if the 

population distributions completely overlap (Figure 8.4(b)). The AUC above is 

also known as the Gini-index. 

 

Further discussions of how AUC can be estimated from ROC-analysis, etc., 

are found in the document  “Using ROC-analysis to determine correct on 
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continuous variables”, which can be downloaded from the following web 

address: www.nwu.ac.za/af/p-statcs/index.html . 

 

8.3 Hit rate and its estimation  

 

A hit rate is the proportion of correctly classified objects in all the populations. 

 

Huberty (1994:  Chapter VI) distinguish between three sorts of hit rates: 

 

(a) Optimal hit rate ( )oP :  This is the hit rate if the classification rule is 

based on the known population centroids and covariance matrices 

(i.e., gu  and gΣ  are known). 

(b) Actual hit rate ( )aP :  The expected hit rate of an upcoming sample (or 

test sample) where the classification rule is based on the training 

sample.  It is also known as the conditional hit rate. 

(c) Expected hit rate ( )eP :  The expected proportion of correct 

classifications in all possible samples of size g gN nΣ= .  Now we have 

( ) ( )( )e aP E P= .  This hit rate is also called the unconditional hit rate and 

is of interest before any samples are drawn. 

 

We will now look at the estimation of the hit rate in different cases. 

 

 

8.3.1  Two univariate normal populations with homogeneous variances 

 

Cohen uses the measure 2U  as the proportion of population B which is larger 

than the same proportion of population A (the proportion of the shaded area 

relative to B’s total area in Figure 8.1).  With the effect size = −B Aδ µ µ / σ  in 
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terms of the two populations’ means and common SD, the distributions can be 

seen as normal ( )N 0;1  and ( )N δ;1  without loss of generality.  This means that  

                            ( )2U δ / 2Φ= ,                                                                     (8.14) 

where ( )xΦ  is the cumulative distribution function of a ( )N 0;1 - distribution. 

 

 

Example 8.1 

Consider Example 4.2 where = = = = =B A A Bµ 111 , µ 105  ,  σ  σ σ 10  are the mean 

IQ’s and SD’s of populations A and B respectively.  With                                    

B Aδ µ µ / σ= − 111 105 / 10= − 0,6= , it follows that  

                                                 = = 
 

2
0,6

U 0,618
2

Φ   , 

which means that a proportion of 0,618 of population B has larger IQ’s than the 

same proportion of A (see Figure 8.2 again).                                          
�
 

                                          

 

Note:   

Cohen (1969, 1977, 1988)’s Table 2.2.1 provides, for selected values of δ , 

values for 2U .  For the guideline values of δ 0,2  0,5=  and 0,8  for, small, medium 

and large effects, the corresponding values for 2U  are 2U 0,54  ,  0,60=   and   

0,66. 

 

According to Huberty & Holmes (1983) 2U  (which they call cP ) is the probability 

of a correct classification and can be estimated by: 

                          ( )c
ˆP δ / 2Φ= ,                                                                        (8.15) 

where  A Bδ̂ x x / s= − , is the sample-effect size (see Chapter 4). 

 

To maximize cP , the following classification rule can be used for A Bx x :<  
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Assign object u  to population A, if ( )< +u A B
1

x x x
2

  otherwise assign it to B. 

 

Example 8.2 

For Example 4.3 the samples drawn from A and B had means 11 and 13 with 

variances 5 and 7,5, while the sample size was 5.  Under the assumption of 

homogeneity of variances, we got δ 0,8=  and thus ( ) ( )Φ Φ= = =c
ˆP δ / 2 0,4 0,66.  

The classification rule is then: 

Classify person u  in population A if ( )u
1

x 11 13 12
2

< + = ,  otherwise classify it in 

B. 

If the variances are not assumed to be homogeneous and sample variances and 

means are substituted in (8.11), the optimum cut off point is 

( ) ( ) ( )
( )

2

*
13 5 11 7,5 5 7,5 13 11 5 7,5 ln 5 / 7,5

12,48,
5 7,5

× − × − × − + −
= =

−
t

 

which differs from the mean of 11 and 13.
 

 

                                                                                                                           □  

8.3.2 Two multivariate normal populations with equal covariance-matrices 

 

Huberty (1994:  83-86) generalize Cohen’s 2U  with the optimum hit rates for 

population A and B as: 

         ( )
Γ ∆

Φ
∆

 − 
= −  

 
 

2

O
A

1

2P 1  and ( )
Γ ∆

Φ
∆

 − − 
= −  

 
 

2

O
B

1

2P 1                            (8.16) 

where ( )Γ = B An π / πℓ , gπ  are the a priori probabilities of membership to g and 

∆  is the Mahalanobis distance defined as 

                     ( ) ( )∆ −= − −2 1
A B A B 'µ µ µ µΣΣΣΣ .                                                    (8.17) 
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The values Γ  and ∆  are estimated from two random samples with 

( )= B AK n p / pℓ  and D̂  where  

2 2

A B

n m 3 mn
D̂ D

n 2 n n

− −= −
−

 ,                                                               (8.18) 

with m  the number of variables and      

( ) ( )−= − −2 1D 'A B A Bx x S x x  ,  A Bn n n .= +                                                   (8.19) 

 

The quantity 2D  can easily be calculated using equation (7.6) in Chapter 7 (it is 

denoted there by 2D̂ ) using the sample version of Wilk’s Λ .  The quantity 2D̂  in 

equation (8.18) is then equivalent to (7.7). 

 

Then it follows that: 

                ( ) ( )Φ Φ
   − − −   

= − −   
   
   

2 2

O O
A B

1 1ˆ ˆK D K D
2 2ˆ ˆP 1   ,  P = 1  ˆ ˆD D

                       (8.20) 

From this expression the total population-hit rate follows 

              ( ) ( ) ( )O O O
A A B B

ˆ ˆ ˆP p P p P= + .                                                                      (8.21) 

For the special case where A Bp p= , then (8.21) reduces to: 

            ( ) ( ) ( ) ( )O O O
A B

ˆ ˆ ˆ ˆP P P D / 2Φ= + =  ,                                                              (8.22) 

which is a generalization of (8.15). 

 

Example 8.3 

Consider Example 7.1:  In this example the estimated value of D̂  is used to 

compare the means of the experimental and control groups’ BDI before test, after 

test and follow-up test scores: D̂ 4,42= .  However, since the two groups are 

chosen to be equally large, the assumption E Kp p=  can be made, so that 

            ( ) ( ) ( ) ( ) ( )O O O
E K

ˆ ˆ ˆ ˆP P P D / 2 2,21Φ Φ= = = =  

                                                        =0,986  . 
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It is almost certain that an individual can be correctly classified in the two groups 

if the BDI’s before, after and follow-up test scores are used. 

 

Assign object u  to population g   if: 

                     ∗ ∗<2 2
ug ug'D D   for g g 1,2.≠ =  

Here the assumption of equal covariance matrices is made and  

        ( )= =1 ' ' 13,04  8,72  6,72Ex x    ,   ( )= =2 ' ' 11,56   15,56   16,36Kx x  

and 

         

35,76   12,57   14,97

12,57   58,37   48,90

14,97   48,90   80,17

 
 =  
 
 

S     is the pooled covariance matrix.              
�
 

The linear classification rule applied to this data reduces to the following rule: 

classify as belonging to group E if: 

-4,153 + 0,178Before + 0,89After + 0,17Followup < -3,239 + 0,346Before + 

0.113After -0.061Followup,  

and otherwise classify it in group K.  Each person’s before, after and follow-up 

scores of BDI are substituted into the left and right in the above formula and if the 

left hand side is smaller than the right hand side, the person is classified in group 

E, otherwise it is classified in group K. 

We find thus that persons 1 and 9 from group E are incorrectly assigned into 

group K (thus 23 out of 25 people are correctly classified), while persons 10, 14-

16, 18-21 from group K are incorrectly assigned to group E (17 out of 25 correctly 

classified).                                                                                                     □  

 

8.3.3    More than two multivariate populations 

 

In practice we usually have many more than two multivariate populations wherein 

objects must be classified.  Under the assumption of normal populations, the 

classification rule in paragraph 8.2 is used.  Unfortunately, the problem is that 



 

18 
 

estimators like ( )OP̂  in (8.21) do not exist for the hit rate.  According to Huberty 

(1994) the PDA can be used in two ways:  internally and externally. 

 

(a) Internal analysis means that the classification rule is based on the 

same data on which it is applied and thus objects are reclassified.  

The proportion of objects which are correctly classified is an estimator 

of the hit rate and is called the apparent or resubstituted hit rate.  This 

hit rate is biased for any of ( )oP  , ( )aP   or ( )eP  and overestimates the 

hit rate.  This method is used by many well-known statistical computer 

packages such as Statistica, SPSS, BMDP and SAS. The output is 

thus easily obtained but, for the reasons outlined above, care should 

be taken when interpreting the estimated hit rate. 

(b) External analysis can be split into the so called hold-out method, the 

leave-one-out (abbreviated L-O-O) method and the maximum-

posteriori-probability method. 

(i) The hold-out method involves removing or holding out a test 

sample by randomly choosing it from the original sample.  The 

remaining data (called the training sample) is used to 

construct the classification rule with which the elements within 

the test sample are classified to determine the hit rate.  This 

method only provides good estimates of ( )aP  in cases where 

the test sample is the same size as the training sample.  The 

abovementioned computer packages can all be used to 

calculate these hit rates. 

(ii) The leave-one-out (L-O-O) method involves leaving out one 

object and then the linear classification rule is based on the 

remaining N 1−  objects’ observations.  The object is then 

classified in to one of the g  populations.  This procedure is 

repeated for each of the N  objects over all the populations 

and the hit rate is then determined afterwards.  This hit rate is, 



 

19 
 

strictly speaking, not an estimator for any of ( )oP ,  ( )aP   or  

( )eP , because it based on a sample size of N 1−  instead of a 

sample of size N .  However, when N  is sufficiently large it 

can be used as an estimator for ( )aP .  The SAS procedure 

called DISCRIM can be used to determine this hit rate by 

invoking the CROSSVALIDATE option. SPSS, on the other 

hand, can be used with the ‘Leave one out’ option.  

Unfortunately, STATISTICA does not have any options for the 

leave-one-out method. 

(iii) The Maximum-posterior-probability method (abbreviated M-P-

P method) is yet another alternative method for estimating 

( )aP .  It is calculated as the mean of all the objects’ maximum 

posterior probabilities: 

( )
N

a

u 1

1
P̂ max

N =
= ∑ {P̂ ( )1 ux , P̂ ( )2 ux ,…, P̂ (k )}ux ,                   (8.23) 

where (P̂ g )ux  is the estimated posterior probability that 

object u  falls in population g .  This probability can be 

estimated via an internal or external analysis.  Both SAS’s 

DISCRIM procedure and SPSS’s DISCRIMINANT  can 

determine (with the aid of the internal methods) the values of 

(P̂ g )ux . The estimator ( )aP̂  is then called the M-P-P/I 

estimator.  SAS’s DISCRIM procedure, along with the 

CROSSVALIDATE option, estimates (P̂ g )ux  by employing 

the external L-O-O-method and the estimator ( )aP̂  is then 

known as M-P-P/L-O-O.  According to Huberty (1994) this 

method is preferable if one can assume multivariate 

normality.  If these assumptions are in doubt then the simple 

L-O-O method would be preferable. 
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Table 8.2 gives the different classifications by using the above mentioned 

methods for the data in Chapter 3, Example F with the 3 activity groups as 

populations from which samples of =1 2n 694, n =227 and 3n =441 ( )N=1362  were 

drawn.   

 

8.4 Effect size index for correct classification 

 

The hit rate, estimated using one of the methods described in the previous 

paragraph, gives us an index which can be used to judge the success of correct 

classification over all the populations.  To judge this hit rate, it is first necessary 

to compare it with the so called chance classification’s probability.  This is the  

 

probability of incidental classification when one does not use any data at all, also 

known as the chance-hit rate. According to Huberty (1994) there are usually two 

ways of determining the chance-hit rate, namely, 

(a) the proportional chance-criterion and  

(b) the maximum chance-criterion.   

 

These two methods will now be discussed. 
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Table 8.2:  Classifications with different methods: 

 

                                                Classification in groups 

(a)  Internal / Linear            1                        2                       3                     Total 

                1                    549 (78,1)          1 (0,1)               151 (21,8)         694 

Groups    2                      96 (42,3)          0 (0,0)               131 (57,7)         227 

                3                    169 (38,3)          0 (0,0)               272 (61,7)         441 

                  Total          807 (59,3)          1 (0,1)               554 (40,7)        1 362 

                  % Error               21,9             100,0                    38,3              40,2 

(b)  L-O-O / Linear 

                1                    540 (77,8)          1 (0,1)              153 (22,1) 

Groups   2                      96 (42,3)          0 (0,0)              131 (57,7) 

                3                    169 (38,3)          0 (0,0)              272 (61,7) 

                  Total          805 (59,1)          1 (0,1)              556 (40,8) 

                  % Error               22,2             100,0                    38,3              40,4 

(c)  Internal / Non- 

                     linear 

                1                    207 (29,8)          66 (9,5)            421 (60,7) 

Groups   2                      25 (11,0)          20 (8,8)            182 (80,2) 

                3                      27   (6,1)          14 (3,2)            400 (90,7) 

                  Total          259 (19,0)        100 (7,3)         1 003 (73,7) 

                  % Error               70,2             91,2                       9,3               54,0 

(d)  L-O-O / Non- 

                   linear 

                1                    206 (29,7)          66 (9,5)            422 (60,8) 

                2                      26 (11,5)          13 (5,7)            188 (82,8) 

                3                      30 (6,8)            19 (4,3)            392 (88,9) 

                  Total         262 (19,2)           98 (7,2)         1 002 (73,6) 

                  % Error               70,3             94,3                    11,1                55,1 

           A priori-prob-            0,51             0,17                    0,32 

           ability 
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8.4.1 Proportional chance-criterion 

 

When we have k  populations of the same size from which samples of equal size 

n  are drawn, the chance-hit rate is clearly 1
k  for each population and the 

expected frequency of a hit per population is = + + +1 1 1n n n ... nk k k.  In the 

general case of populations with unequal sizes, equal chance hit rates of 1
k  are 

replace with gp , i.e., the estimated a priori probability of membership to 

population g .  When we also have unequal sample sizes, i.e., gn , =g 1,...,k , 

then the expected frequency of a hit for population g  is  =g g ge p n , so that the 

chance-frequency of a hit over all the populations is then  

                                  
= =

= =∑ ∑
k k

g g g
g 1 g 1

e e p n .                                                (8.24) 

Let = + + +1 2 kN n n ... n , then the chance-hit rate over all the populations is: 

                                  
=

= = ∑
k

e g g
g 1

e 1
H p n

N N
                                                      (8.25) 

 

 

Example 8.4 

In Chapter 3, Example F, the three activity groups form the populations from 

which the samples of size =1 2n 694, n =227 and 3n =441 ( )N=1362  are drawn.  

Suppose that the researcher chooses the a priori probabilities to be 0,5, 0,25 and 

0,25.  Now, the chance-hit frequencies, are 0,5 x 694 = 347 for activity group 1, 

0,25 x 227 = 56,75 and 0,25 x 441 = 110,25 for groups 2 and 3 respectively.  

Thus, the total chance hit frequencies are 347 + 56,75 + 110,25 = 514, so that 

the chance-hit rate for all the groups is = =eH 514 / 1362 0,377.  If we assume 
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that the a priori probabilities are proportional to the sample sizes, then it follows 

that the total chance-frequency of a hit becomes: 

                       

     × + × + ×     
     

= + +
=

694 227 441
694 227 441

1362 1362 1362

353,6 37,8 142,8

534,2,

 

and that the total chance-hit rate is now = =eH 534,2 / 1362 0,392. 

 

This means if the 1362 men are randomly split into groups, i.e., without using any 

data, then we could expect a hit rate of 38-40%.      □  

 

 

8.4.2 Maximum chance criterion 

 

In this situation the chance-hit rate eH  is simply taken to be equal to the 

maximum of the different estimated a priori probabilities: 

                        ( )e 1 2 kH max p , p ,...p=                                                             (8.26) 

According to Huberty & Lowman (2000) this criterion is most applicable with 2 

groups when the a priori-probabilities are radically different. 

 

Example 8.5 

In Example 8.4 we calculated =eH 0,5 using the pre-specified a priori-

probabilities.  Now, the proportional a priori-probabilities are 694 / 1362 = 0,51 ; 

227 / 1362 = 0,17 and 441 / 1362 = 0,32, and we get 

( )eH max  0,51 ; 0,17 ; 0,32 0,51= = .            � 
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8.4.3 Statistical testing of the frequency of a hit  

 

If the frequency of a hit of population g  in the classification frequency table is 

denoted by ggn , then the total frequency of a hit is given by: 

                         
=

=∑
k

gg
g 1

o n  . 

Under the null hypothesis of incidental classification, it follows that 

                         
( )

( )−=
−

o e
z N 0;1 .

e N e / N
∼  

The testing of this null hypothesis produces the p-value: p = ( )≥P Z z , where Z  

follows a ( )N 0;1  distribution. 

The lower ( )−1 α 100% confidence bound for the actual frequency of a hit is thus 

(Huberty, 1994:  105): 

                         ( )−αo-z e N e / N ,                                                                  (8.27) 

where αz  is the ( )−1 α -th percentile of a ( )N 0;1  distribution. 

For population g  it follows similarly that  

                       ( )− −g α g g g go z e n e / n                                                            (8.28) 

which is the lower ( )−1 α 100% confidence bound for the actual frequency of a hit. 

 

Example 8.6:  

In Example 8.4 the proportional chance criterion was =e 534,2 while from Table 

8.1 (b) (where the L-O-O / Linear method was used) it follows that o  = 540 + 0 + 

272 = 812 . 

                     
( )

−= = =
−

812 534,2 277,8
z 15,42

324,67534,2 1362 534,2 / 1362
 

so that <p 0,0001.  The 95% confidence-lower bound for the actual frequency of 

a hit is then: 
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( )− −

= − =

 812 1,645 534,2 1362 534,2 / 1362

=812-1,645 324,67

812 29,6 782,4

 

Applying the chosen a priori-probability for population 3, we get 

= × = × =3 3e 0,25 n 0,25 441 110,25.  Then, from Table 8.1(b) the observed 

frequency of a hit is =3o 272, we find that <p 0,0001 and the 99% confidence 

lower bound for the actual frequency of a hit for population 3 is: 

                

( )−

= −
= − =

272 2,33 110,25 441-110,25 / 441

272 2,33 82,69

272 21,19 250,8.

 

This means that the total frequency of a hit can be as low as 782,4 with 95% 

probability, while the frequency of a hit for population 3 can be as small as 250,8 

with 95% probability.                                                                   � 

 

 

8.5 Effect size index:  Better-than-chance 

 

By comparing the actual or observed hit rate oH  with the chance hit rate eH , the 

value oH  is adjusted for incidental correct classification of objects.  The size of 

the chance error rate e1 H ,−   in comparison to the observed error rate o1 H ,−   

the following effect size index is obtained (see Huberty & Lowman, 2000, 

Huberty, 1994): 

                   
( ) ( )e o o e

e e

1-H 1-H H H
I =

1-H 1 H

− −=
−

   .                                                    (8.29) 

 

 

From the definition of the effect size index, I can also be described as an index 

for the proportional reduction in error of the “better-than-chance” index.   
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Note that the index depends on the definition of “chance” as reflected by eH , 

which is, in turn, dependent on the estimation of the a priori probabilities. 

 

Example 8.7: 

For Example 8.4’s classification of persons within the 3 populations, Table 8.1 

displays four different observed error rates ( )o1-H .  We use the chance error 

rates based on the proportional a priori-probabilities, − = − =e1 H 1 0,392 0,608, 

and the following values for I can be obtained: 

 

        Methods                         p                o1-H                e1-H                  I 

(a)  Internal/Linear              <0,0001           0,402           0,608            0,339 

(b)  L-O-O/Linear                <0,0001           0,404           0,608            0,336 

(c)  Internal/Non-linear        <0,0001           0,540           0,608            0,112 

(d)  L-O-O/Non-linear          <0,0001           0,551           0,608            0,094 

                                                                                                                           � 

It would appear from Example 8.7 that methods (a) and (b) provide better 

classifications based on higher values of I.  Note that in all cases <p 0,0001, 

which means that the null hypothesis of incidental classification is rejected 

throughout for large samples.  This indicates that the classifications are not the 

results of simple coincidence, however, this is not necessarily a good thing.  In 

order to judge the success of the classifications, the index I can be used.  The 

value 0,34 obtained from method (a) in Example 8.7 implies that there is a 34% 

reduction in the error rate when using this method of classification in comparison 

with a plain chance classification. 

 

 

8.6 Relationship between proportion variance (((( ))))2
η  and the better-than-

chance index ( I ) 

 

8.6.1 Homogenous variances or covariance matrices 
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To try and get an intuitive “feel” for the index I, Huberty & Lowman (2000) 

considered six of the thirteen dependent variables.  They compared groups 1 and 

2 for each of the variables for the BISBEY-data in Huberty (1994).  The variances 

are assumed to be homogenous throughout, so that it reduces to the univariate 

two group case with homogenous variances. 

 

By using 0,333 and 0,667 as a priori probabilities and choosing to employ the 

maximum-chance-criterion, we obtain: eH 0,667= .  The t-values for the t-test on 

each of the variables, provided in Table 8.3 (Huberty & Lowman’s Table 1), and 

the hit probabilities oH  are both used in the linear classification rule.  The 

proportion variance 2η  is estimated by using equation (5.24) in Chapter 5. 

 

 

Table 8.3:  Results of univariate 2-group comparisons with homogenous 

variances 

 

              t                    p                   2η̂                        oH                        I  

           -1,07               0,286                0,010                0,698                 0,09 

           -1,46               0,147                0,018                0,681                 0,04 

           -3,58               0,001                0,101                0,707                 0,12 

           -3,74               0,000                0,109                0,698                 0,09 

           -6,29               0,000                0,258                0,810                 0,43 

           -8,12               0,000                0,366                0,836                 0,51 

 

The Pearson correlation ( )r  between 2η̂  and I  is found to be 0,90, while the 

Spearman rank correlation ( )sr  of 0,81 indicates a strong monotone relationship. 
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In the same manner Huberty & Lowman (2000) proceeds by using the same data 

to determine the relationships between the estimated 2η  values and the I -index 

in the following cases: 

(a) Univariate, 3-group comparisons with homogenous variances:  r = 0,97 

(b) Multivariate, 2-group comparisons with homogenous covariance-matrices:  

r = 0,95 

(c) Multivariate, 3-group comparisons with homogenous covariance-matrices:  

r = 0,98 

 

While these results do not necessarily hold in general, they do provide a good 

indication of whether or not a positive linear relationship exists between 2η  and 

I  in the case of homogenous variances and covariance matrices. 

 

 

8.6.2 Heterogeneous variances of covariance matrices 

 

The estimated proportion variance 2η , which, in the previous paragraph, was 

related to I  as effect size-indices, can no longer be used because homogenous 

variances of covariance matrices must be assumed.  Huberty & Lowman (2000) 

therefore attempted to correlate I  with test statistics which are used to test the 

null hypothesis of equal means when heterogeneous variances or covariance 

matrices are assumed.  For a chosen data set they tried to ascertain this 

correlation in the following cases: 

 

(a) Univariate, 2-group comparisons with heterogeneous variances:  Test 

statistic J (James’s 2nd order test) with I  (the non-linear / L-O-O-method 

with maximum-chance criterion) produces the correlation r = 0,89. 

(b) Univariate, 3-group comparisons with heterogeneous variance:  r = 0,88 

(c) Multivariate (4 variables), 2-group comparisons with heterogeneous 

covariance matrices Test statistic T (from Yao) with I : 
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           r = 0,97 

(d) Multivariate 3 variables), 3-group comparisons with heterogeneous 

covariance matrices:  Test statistic S (from Johansen) with I:  r = 0,84 

 

 

8.7 Guideline values for the index I 

 

When one compares two populations, then Huberty & Holmes (1983) agree with 

Cohen (1969) that the standardized difference of δ 0,2=  indicates a small effect 

(see paragraph 4.5, Chapter 4).  According to their table 2, the expected hit rate 

( )eP  is approximately 0,55.  If we assume equal a priori-probabilities for the two 

populations, it follows that eH 0,5= , while if the estimated value of ( )eP  using 

oH  is 0,55, then we find that 
0,55 0,5

I 0,1
0,5

−= = .  Huberty & Holmes feel that a 

medium effect for classification with an expected hit rate of 0,65 (i.e., I 0,3= ) 

should correspond, which is equivalent to δ 1,0= .  Further, they require that 

( )eP 0,75=  is a large effect (i.e., I 0,5= ), where δ 1,5= . 

 

Huberty & Lowman (2000) suggest the following guidelines, based on exploratory 

analyses for univariate 2-group classification with homogenous variances: 

 

 

Effect 

Small               I 0,1<  

Medium          0,15 I 0,25< <  

Large              I 0,3>  

 

In the k-group case, Huberty & Lowman (2000) suggest using these same 

guidelines.  They also provide guidelines for the other cases.  Table 8.4 is a 

summary of these guidelines: 
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Table 8.4:  Guidelines for better-than-chance index 

 

                                               Number                             Effect 

 Univariate                               Populations     Small        Medium        Large 

                      Homogenous              2             I 0,1<    0,15 I 0,25< <    I 0,3>  

 Variances                                             k              I 0,1<    0,15 I 0,25< <     I 0,3>  

                   Heterogeneous             2             I 0,1<    0,15 I 0,25< <     I 0,3>  

                                                               3             I 0,05<  0,10 I 0,20< <    I 0,25>  

Multivariate 

                          Homogenous               2            I 0,15<     0,2 I 0,3< <     I 0,35>  

Covariance-                                           3             I 0,1<    0,15 I 0,25< <     I 0,3>  

Matrices           Heterogeneous             2              I 0,1<   0,15 I 0,25< <     I 0,3>  

                                                              3            I 0,05<  0,10 I 0,20< <     I 0,25>  

 

In summary, Huberty & Lowman (2000)’s suggestion that, for all cases, I 0,1≤  

should be considered a small effect and I 0,35≥  should be considered a large 

effect.  However, they warn that their suggestions are based on a restricted 

number of data sets and that they did not investigate cases with more than 3 to 4 

populations. 

 

 

8.8 Uses of the index I  

 

The effect size index I  can be used in ways.  First, it can be used as an index 

for the success of the classification rule in the discriminant analysis.  This usage 

would be employed when the primary interest is in determining whether the 

classification rule is able to correctly classify future observations.  A second 

usage of I  is to use it as an effect size index instead of using 2η   (and other 

special cases, e.g., δ ) when heterogeneous variances occur.  While 2η  can be 
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influenced by the number of groups and the number of observations (N), I ‘s 

value is never directly influenced by N  (Huberty & Lowman, 2000). 

 

When we have heterogeneous variances, the indices 1 2, , ,m∆ ∆ ∆
  

gδ and cδ  can be 

used in the univariate, 2-group case.  For any other situation however, (see 

Chapters 6 and 7 of this manual), we assume homogeneity of variances.  Here I  

can be effectively used when it is based on the quadratic classification rule. 

 

We usually assume normality when performing statistical tests on the mean 

vector and is followed up by the estimation of the effect size 2η .  Essentially, the 

assumption of normality is not necessary in the use of classification rules, but 

usually the rules result from it.  Huberty (1994:  Chapter X) provides some 

methods for performing discriminant analysis when normality is not assumed.  If 

the variables are continuous, but are non-normal, we can use, for example, rank 

transformations and nearest neighbours analyses.  These methods are available 

in SAS (among other computer packages). 

 

For categorical, nominal variables there are, according to Huberty, two 

possibilities.  First, one can create c - 1 dummy variables (with values 0 and 1) 

for each of these types of variables, where c is the number of categories in the 

variable.  The problem with this method is that the final number of dummy 

variables can cause the analysis to become intractable.  In these cases ordinary 

classification rules can be used.  A second possibility is to perform a Fisher-

Lancaster analysis (Huberty, 1994: 153) where each variable category 

represents a score.  This transformed data can once again be dealt with using 

ordinary classification rules. 

 

The abovementioned methods cover almost all situations (heterogeneity of 

variance and non-normality among other) making the better-than-chance index I  

a more general index than 2η  for example.   
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More research is necessary to determine the relationship between I  and 2η  in a 

larger variety of situations than discussed in Huberty and Lowman (2000).  Also, 

guideline values for I  are still very tentative and should be made clearer so that 

they can be made more general. 

 

A SAS program which can be used to calculate I  (Groepoorvleueling.sas) is 

available on the web page of this manual. 

 

 

 

 

 

 

 


