Using ROC-analysis to determine correct on continuous variables.

H. S. Steyn
Statistical Consultation Service

1. Sensitivity, Specificity and Predicted values (Kline, 2004a)

Suppose that a disease or abnormality is studied and individuals are categorized as "positive" if they exhibit the disease or abnormality and "negative" otherwise. Other examples include clinical psychologists that would like to classify individuals as depressive or normal, or a bank that want to classify clients asking for loans as being potentially risky or not. These classifications are typically made through the use of "gold standard" diagnostic tests that are possibly expensive and/or time-consuming. If a method (also called a screening test) existed to identify the diseased/abnormal/risky individuals, that was simpler and cheaper than the "gold standard", then it would be important to know how trustworthy it was as a predictor for diseased/abnormal/risky individuals. In further discussion we will refer to the population of sick (S) and the non-sick (N) individuals for the individuals that have a disease or not, have an abnormality or not, or are considered risky or not. Typically the measurements made for these screening tests produce a continuous value (i.e., a value that varies over a certain interval) and a cut-off or threshold value is often used to classify individuals, e.g., values above the threshold value indicate the presence of a disease, while values below it indicate the absence of the disease. Figure 1 provides a graphical representation of the distributions of populations S and N 's screening test measurements.

Figure 1:

Sensitivity

If individuals are classified according to their actual status (according to some golden standard) as well by the screening test, then it produces the following 2×2 - frequency table:

	Actual status		
Screening test	Sick (S)	Not-sick (N)	Total
+	A (true pos.)	B (false pos.)	A + B (test +)
-	C (false neg.)	D (true neg.)	C + D (test -)
Total	A + C (sick)	B + D (not-sick)	N $=\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}$

In this table there are A sick individuals that reacted positively to the screening test. If it is expressed as a proportion of all the sick individuals $(A+C)$, then it gives the sensitivity, i.e.,

$$
\begin{equation*}
\text { Sensitivity }=\frac{A}{A+C}, \tag{1}
\end{equation*}
$$

the proportion of correctly classified positives (i.e., where sick individuals test positively). Similarly, there are D individuals correctly classified as not-sick; when this is expressed as a proportion with respect to the total not-sick individuals it is called the specificity, i.e.,

$$
\begin{equation*}
\text { Specificity }=\frac{D}{B+D}, \tag{2}
\end{equation*}
$$

the proportion of correctly classified negatives (i.e., where not-sick individuals test negatively).

A good screening test should have a high sensitivity as well a high specificity, because the opposite would be unfavourable. That is, to classify a sick person as not-sick (a total of C individuals) is unfavourable; similarly it is also unfavourable to classify a person as being not-sick if they are sick (a total of B individuals).

In the populations (as shown in Figure 1) the area under the S-distribution (sick individuals) to the right of the cut-off point denotes the sensitivity and the area under the N-distribution to the left of the cut-off point is called the specificity. Ideally the two distributions would be completely separated and the cut-off point chosen such that both the sensitivity and specificity are equal to 1.

A $(1-\alpha) 100 \%$ confidence interval (CI) for the sensitivity is given by:

$$
\text { Sens } \pm z_{\alpha / 2} \sqrt{\operatorname{Sens}(1-\operatorname{Sens}) /(A+C)}
$$

Whereas the Cl for Specificity is:

$$
\operatorname{Spec} \pm z_{\alpha / 2} \sqrt{\operatorname{Spec}(1-\operatorname{Spec}) /(B+D)}
$$

where Sens and Spec are the sensitivity and specificity as given in equations (1) and (2), $z_{\alpha / 2}$ is the $(1-\alpha / 2)^{\text {th }}$ percentile of the standard normal distribution.

2. The ROC-curve (Krzanowski \& Hand, 2009)

First consider the populations S and N. For each cut-off point t, we can construct a 2×2 - table of probabilities as follows:

Populations

Screening tests	S	N
+	$\mathrm{P}(X>t \mid S)$	$\mathrm{P}(X>t \mid N)$
-	$\mathrm{P}(X \leq t \mid S)$	$\mathrm{P}(X \leq t \mid N)$

(here X is the screening test).

The values of $P(X>t \mid S)$, i.e., the sensitivity or proportion of true positives (tp) versus $\mathrm{P}(X>t \mid N)$, i.e., 1 - specificity or the proportion of false positives (fp), can be plotted on a graph for a sequence of cut-off values t. The resulting plot is known as ReceiverOperating Characteristic curve, or ROC-curve.
Figure 2 displays some examples of different ROC curves.

Figure 2:
(a)

(b)

Figure 2(a) is obtained if the populations in Figure 1 are both normally distributed, population S has mean and standard deviation $\mu_{S}=4, \sigma_{S}=1$, and population N has mean and standard deviation $\mu_{N}=0$ and $\sigma_{N}=1$. Here the populations are completely separated since the density function of the S population lies almost entirely to the right of the density function of the N population. This ROC curve illustrates the near best possible curve obtainable; the optimal cut-off point between the two distributions can easily be chosen. The other extreme is illustrated by the diagonal line (dashed line) in Figure 2(b) where it is used to indicate the hypothetical situation where both distributions are assumed to be $N(0 ; 1)$ and thus indistinguishable from one another.

In this case individuals from each population are equally likely to be classified as positive or negative.

Figure 2(b) also illustrates a ROC-curve (solid line) that could be obtained from a situation similar to Figure 1; an appropriate optimal cut-off point can then be chosen from this graph.

3. Properties of the ROC-curve

1. It is monotone increasing between $x=0, y=0$ and $x=1, y=1$, where the x-axis is associated with the 1 -specificity values (fp) and the y-axis is associated with the sensitivity values (tp) for a sequence of cut-off points.
2. It is invariant to monotone increasing transformations (e.g., the log transformation) on the screening test values.
3. The gradient of the ROC-curve at cut-off point t is $f_{S}(t) / f_{N}(t)$, where $f_{S}(t)$ and $f_{N}(t)$ are the density functions of population distributions S and N in the point t.

4. Area Under the ROC-curve (AUC)

If one considers Figure 2, it is clear that the area under the ROC-curve in (a) is approximately 1 , in (b) it is between 0,5 and 1 in the case of the solid line, and exactly 0,5 in the case of the dashed line. This "Area Under the Curve" is denoted by AUC and is used as a measure of the ability to discriminate between the distributions S and N. Larger values of AUC indicate a greater discriminatory ability. The AUC value 0,5 indicates that the one is unable to distinguish between S and N.

AUC can also be interpreted as follows:
Suppose that an individual is randomly chosen from each of the populations S and N and the screening scores are X_{S} and X_{N}, then:

$$
\begin{equation*}
\mathrm{AUC}=\mathrm{P}\left(X_{S}>X_{N}\right), \tag{3}
\end{equation*}
$$

which means that the AUC is the probability that X_{S} is larger than X_{N}. In terms of Figure 2 this probability is close to 1 if the two populations are easily distinguishable (Figure 2(a)), whereas the probability is 0,5 if the population distributions completely overlap (Figure 2(b)).

Single points and partial areas

If one is interested in a specific false positive rate ($\mathrm{fp}=\mathrm{x}_{0}$), then one can use the ROCcurve to determine the corresponding true positive rate (tp) by reading off the tp at $\mathrm{y}\left(\mathrm{x}_{0}\right)$. For example, take $x_{0}=0.05$ (i.e., specificity of 0.95) and then use it to find out what the
corresponding sensitivity is. In other words, we want to determine what the true positive rate would be if most of the normal (not-sick) population is correctly classified as negative.

Sometimes we are only interested in considering tp when $f p$ values lie within a certain interval ($\mathrm{f}_{1}, \mathrm{f}_{2}$). A summarizing index is the partial area under the curve (PAUC), i.e., the area under the ROC-curve between $f p=f_{1}$ and $f p=f_{2}$. Depending on the values of f_{1} and f_{2}, the PAUC can take on any minimum or maximum value between 0 and 1 . This makes it rather difficult to interpret the PAUC value.

From Figure 2(b) it is clear that the maximum value of the PAUC is the area of the rectangle with its base on the interval $\left(f_{1}, f_{2}\right)=(0,2 ; 0,5)$, i.e., $\left(f_{2}-f_{1}\right)=0,3$, and height 1 . The minimum size of the area of the trapezium under the diagonal line (i.e., the ROCcurve associated with the case where one cannot distinguish between populations S and N) between f_{1} and f_{2}, is equal to $\frac{1}{2}\left(\mathrm{f}_{2}-\mathrm{f}_{1}\right)\left(\mathrm{f}_{1}+\mathrm{f}_{2}\right)$, which is equal to $0,3 \times 0,7 / 2=0,105$ in Figure 2(b). The following expression is an index between 0 and 1 which can be used to interpret the PAUC:

$$
\begin{equation*}
I_{\text {PAUC }}=\frac{1}{2}\left[1+\frac{\operatorname{PAUC}\left(\mathrm{f}_{1}, \mathrm{f}_{2}\right)-\left(\mathrm{f}_{2}-\mathrm{f}_{1}\right)\left(\mathrm{f}_{1}+\mathrm{f}_{2}\right) / 2}{\left(\mathrm{f}_{2}-\mathrm{f}_{1}\right)\left(1-\left(\mathrm{f}_{1}+\mathrm{f}_{2}\right) / 2\right)}\right] \tag{4}
\end{equation*}
$$

(see paragraph 2.4.2, Krzanowaski \& Hand, 2009).
If the ROC-curve's equation, $y(x)$, is known, then the PAUC is given by:

$$
\begin{equation*}
\text { PAUC }=\int_{f_{1}}^{f_{2}} y(x) d x \tag{5}
\end{equation*}
$$

i.e., the integral of the function $y(x)$ between f_{1} and f_{2}.

5. The binormal model

If the populations S and N are each normally distributed, then the ROC-curve can be formulated as follows:

Define the 1-specificity at cut-off point t as $x(t)=\mathrm{P}(X>t \mid N)$ and the sensitivity at t as $y(t)=\mathrm{P}(X>t \mid S)$. Suppose that S has a $N\left(\mu_{S}, \sigma_{S}^{2}\right)$ distribution and that N has a $N\left(\mu_{N}, \sigma_{N}^{2}\right)$ distribution, then

$$
x(t)=\mathrm{P}\left(\mathrm{Z} \leq \frac{\mu_{N}-t}{\sigma_{N}}\right)=\Phi\left(\frac{\mu_{N}-t}{\sigma_{N}}\right)
$$

where Z is a standard normal random variable and $\Phi(\cdot)$ is the standard normal distribution function. Let z_{x} be the value of Z such that the distribution function evaluated in this point is $x(t)$, then it follows that

$$
z_{x}=\Phi^{-1}(x(t))=\frac{\mu_{N}-t}{\sigma_{N}}
$$

and therefore

$$
\begin{equation*}
t=\mu_{N}-\sigma_{N} z_{x} \tag{6}
\end{equation*}
$$

Similarly,

$$
y(t)=\Phi\left(\frac{\mu_{S}-t}{\sigma_{S}}\right)
$$

so that from (6) is follows that:

$$
\begin{equation*}
y(t)=\Phi\left(\frac{\mu_{S}-\mu_{N}+\sigma_{N} z_{x}}{\sigma_{S}}\right)=\Phi\left(a+b z_{x}\right), \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
a=\frac{\mu_{S}-\mu_{N}}{\sigma_{S}} \text { and } b=\frac{\sigma_{N}}{\sigma_{S}} \tag{8}
\end{equation*}
$$

Note that $a>0\left(\mu_{S}>\mu_{N}\right)$ and $b>0$.

Further, $\mathrm{AUC}=\mathrm{P}\left(X_{S}>X_{N}\right)$

$$
\begin{aligned}
& =\mathrm{P}\left(X_{S}-X_{N}>0\right) \\
& =\mathrm{P}\left(\mathrm{Z}>\frac{\mu_{S}-\mu_{N}}{\sqrt{\sigma_{S}^{2}+\sigma_{N}^{2}}}\right) \\
& =1-\Phi\left(\frac{-\mu_{S}+\mu_{N}}{\sqrt{\sigma_{S}^{2}+\sigma_{N}^{2}}}\right) \\
& =\Phi\left(\frac{\mu_{S}-\mu_{N}}{\sqrt{\sigma_{S}^{2}+\sigma_{N}^{2}}}\right)
\end{aligned}
$$

$$
\begin{equation*}
=\Phi\left(\frac{a}{\sqrt{1+b^{2}}}\right) \tag{9}
\end{equation*}
$$

6. Estimation of ROC-curves

6.1 The empirical estimator:

The true positive rate for cut-off point t is

$$
t p=\mathrm{P}(X>t \mid S)
$$

whereas the false positive rate is given by

$$
f p=\mathrm{P}(X>t \mid N) .
$$

The obvious or natural estimators for these rates are based on random samples from the populations S and N are given by:

$$
\begin{equation*}
\hat{\mathrm{tp}}=\frac{\mathrm{n}_{\mathrm{s}(\mathrm{t})}}{\mathrm{n}_{\mathrm{s}}} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\mathrm{fp}}=\frac{\mathrm{n}_{\mathrm{N}(\mathrm{t})}}{\mathrm{n}_{\mathrm{N}}} \tag{11}
\end{equation*}
$$

where $n_{A(t)}$ is the number of individuals drawn from population A where the screening test's values were greater than t, while n_{S} and n_{N} are the sample sizes.

By varying t between the largest value of X in the sample to the smallest value, one can calculate $\hat{t p}$ and $\hat{f p}$. The plot of the different points $(\hat{f p}, \hat{t p})$ obtained in this way produces the empirical ROC-curve.

Example 1: Krzanowski \& Hand (2009) provide the following example on p.42:
Suppose that a sample of 10 individuals is drawn from each of the populations N and S, and the ordered values of the screening test are:
N : 0,3
0,4
0,5
0,5
0,5
0,6 0,7
$0,7 \quad 0,8$
0,9
S : 0 0,5 $0,6 \quad 0,6 \quad 0,8 \quad 0,9 \quad 0,9 \quad 0,9 \quad 1,0 \quad 1,2 \quad 1,4$

This data can be visualised in the following dot plot:

Table 1 shows the values of $\hat{f p}$ and $\hat{t p}$ for a sequence of cut-off points t :

Table 1: Coordinates of the empirical ROC-curve

t	$\hat{f p}$	$\hat{t p}$
$\geq 1,4$	0,0	0,0
1,2	0,0	0,1
1,0	0,0	0,2
0,9	0,0	0,3
0,8	0,1	0,6
0,7	0,2	0,7
0,6	0,4	0,7
0,5	0,5	0,9
0,4	0,8	1,0
0,3	0,9	1,0
$<0,3$	1,0	1,0

Figure 3: Empirical ROC-curve

6.2 Estimation of the binormal model:

The values of a and b in (8) can be estimated using the method of maximum likelihood because we assume that the populations S and N are both normally distributed. The method given in Metz et al. (1998) can be used here (with the aid of the MS Windows program ROCKIT, freely available for download at http://labs.fhcrc.org/pepe/dabs/software.html).

To ensure that the assumption of normality is appropriate, each sample's screening test value can be transformed using the Box-Cox transformation. This involves a power transformation as follows:

$$
Y(X)= \begin{cases}\frac{X^{\lambda}-1}{\lambda}, & \lambda \neq 0 \\ \log (X), & \lambda=0\end{cases}
$$

where λ is chosen such that Y is normally distributed. Statistica (Statsoft Inc., 2009) can be used to perform this transformation. Note that this class of transformations is monotone increasing; this implies that the ROC-curve will remain unchanged. In cases where the sample shows evidence of a multi-modal distribution, the Box-Cox transformation cannot be used. Further, it is important to note that the same transformation should be applied to both samples. If the needed transformations differ greatly in the two samples then one should rather not use a transformation at all; in this case one should treat the binormal model with extreme caution.

6.3 Nonparametric estimation of ROC:

If no assumptions can be made regarding the distribution of the screening test, X, for the populations S and N, then it is possible to obtain estimates of the density functions f_{S} and f_{N} using kernel density estimators and then to estimate $P(X>t \mid S)$ and $P(X>t \mid N)$ with smoothed functions. This method is described in paragraph 3.3.3 of Krzanowski \& Hand (2009) where an example of a ROC-curve plotted with the help of the LABROC program is shown.

7. Confidence intervals for ROC-curves

7.1 Empirical methods:

The empirical ROC-curve is a plot of the points $(\hat{f p}, \hat{t p})$ for each cut-off point t. The question is now: how accurately do $\hat{f p}$ and $\hat{t p}$ estimate the true proportion of false positives and true positives? Confidence intervals (CIs) for $f p$ and $t p$ can shed some light on this issue; there are three possibilities:
(a) A Cl for $t p$ for a given $f p$ (a vertical interval around $\hat{t p}$ at a given point on the horizontal axis of the ROC graph).
(b) A Cl for $f p$ for a given $t p$ (a horizontal interval around $\hat{f p}$ at a given point on the vertical axis of the ROC graph).
(c) A Cl for $(f p, t p)$ for a given cut-off point, t. Since $\hat{f p}$ and $\hat{t p}$ are both proportions and they are independent of one another for a given t, one can construct separate binomial Cls for $f p$ and $t p$ (horizontal and vertical intervals around $(\hat{f p}, \hat{t p})$). A joint $(1-\alpha) 100 \%$ confidence region for the pair ($f p, t p$) follows from the independence of $\hat{f p}$ and $\hat{t p}$, and is given by the rectangle with midpoint $(\hat{f p}, \hat{t p})$ and sides formed by the $(1-\tilde{\alpha}) 100 \%$ CIs, where $\tilde{\alpha}=1-\sqrt{1-\alpha}$.

The $100(1-\alpha) \% \mathrm{Cl}$ in case (c) above is given for each t :
For $t p: \quad t \hat{p} \pm z_{\alpha / 2} \sqrt{\frac{t \hat{p}(1-t \hat{p})}{n_{S}}}$.

For $f p: \quad \quad f \hat{p} \pm z_{\alpha / 2} \sqrt{\frac{f \hat{p}(1-f \hat{p})}{n_{N}}} \quad$.

For $(f p, t p)$: rectangle with $(\hat{f p}, \hat{t p})$ as its midpoint and side lengths given by (12) and (13), but where $\tilde{\alpha}$ is used instead of α.

The Cls in cases (a) and (b) also depend on the density functions of the populations S and N and can be determined with the aid of kernel density estimation (see Krzanowski \& Hand, 2009: paragraph 3.4.1).

7.2 Binormal method:

Along with the maximum likelihood estimators \hat{a} and \hat{b} for a and b in (8), the ROCKIT program also provides the values of $\operatorname{Var}(\hat{a}), \operatorname{Var}(\hat{b})$ and $\operatorname{Cov}(\hat{a}, \hat{b})$.

Now, since the variance of $\hat{a}+\hat{b} z_{x}$ is given by

$$
\begin{equation*}
V=\operatorname{Var}(\hat{\mathrm{a}})+z_{x}^{2} \operatorname{Var}(\hat{b})+2 z_{x} \operatorname{Cov}(\hat{a}, \hat{b}), \tag{14}
\end{equation*}
$$

it follows that the $(1-\alpha) 100 \% \mathrm{Cl}$ for $a+b z_{x}$ is given by:

$$
\begin{equation*}
(L, U)=\hat{a}+\hat{b} z_{x} \pm z_{\alpha 2} \sqrt{V}, \tag{15}
\end{equation*}
$$

so that the Cl for $t p$ given $f p=x$ is:

$$
\begin{equation*}
[\Phi(U), \Phi(L)] \tag{16}
\end{equation*}
$$

Note:
ROCKIT provides the standard error of \hat{a} and \hat{b}, i.e., $\operatorname{se}(\hat{a})$ and $s e(\hat{b})$, as well as the correlation between \hat{a} and \hat{b}, i.e., $r(\hat{a}, \hat{b})$ and so we can obtain an expression for V as follows:

$$
\begin{equation*}
V=[\operatorname{se}(\hat{a})]^{2}+\left[z_{x} \operatorname{se}(\hat{b})\right]^{2}+2 z_{x} \operatorname{se}(\hat{a}) \operatorname{se}(\hat{b}) r(\hat{a}, \hat{b}) . \tag{17}
\end{equation*}
$$

7.3 Nonparametric methods:

These methods, described in paragraph 3.4.3 of Krzanowski \& Hand (2009), make use of the nonparametric estimation of the ROC-curve, kernel density estimators of f_{S} and f_{N}.

8. Estimation of AUC

8.1 Empirical method:

Since the AUC is simply the area under ROC-curves one can easily determine this by making use of the trapezoidal rule; this rule involves determining the sum of trapeziums formed when one inserts vertical lines at each point of the empirical curve that run from the point on the curve down to the horizontal axis, cf. Figure 3. This method is unnecessary if one makes use of (3) where

$$
\mathrm{AUC}=P\left(X_{S}>X_{N}\right)
$$

An estimator for this probability is nothing other than the Mann-Whitney U-statistic, expressed as a proportion of all possible pairs of individuals from the populations S and N, where the X-values from individuals in S exceed the values from N.

$$
\begin{equation*}
\text { Thus } A \hat{U} C=U /\left(n_{S} n_{N}\right) \text {, } \tag{18}
\end{equation*}
$$

where U is the Mann-Whitney- U-statistic based on two samples of size n_{S} and n_{N} from populations S and N.

8.2 Binormal method:

According to (9) the AUC is estimated as

$$
\begin{equation*}
A \hat{U} C=\Phi\left(\frac{\hat{a}}{\sqrt{1+\hat{b}}}\right) \tag{19}
\end{equation*}
$$

8.3 Nonparametric method:

This method also makes use of kernel density estimation; it is described in paragraph 3.5.1 of Krzanowski \& Hand (2009).

8.4 Estimation of partial AUC:

A parametric estimator of PAUC can be obtained using the binormal model, i.e., from (5) and (7) we have:

$$
\text { PAÛC }=\int_{\mathrm{f}_{1}}^{\mathrm{f}_{2}} \Phi\left(\hat{\mathrm{a}}+\hat{\mathrm{b}} \mathrm{z}_{\mathrm{x}}\right) \mathrm{dx} .
$$

The integral can be evaluated using numerical integration techniques.
Nonparametrically, the PAUC can be determined from the probability

$$
\mathrm{P}\left(\mathrm{X}_{\mathrm{s}}>\mathrm{X}_{\mathrm{N}}, \mathrm{f}_{1} \leq 1-\mathrm{F}\left(\mathrm{X}_{\mathrm{N}}\right) \leq \mathrm{f}_{2}\right),
$$

where F is the distribution function of X in population S. This is similar to the method used to calculate the Mann-Whitney statistic. See paragraph 3.5.2 of Krzanowski \& Hand, (2009) for this method.

A simple procedure used in practice is to make use of the trapezoidal rule (discussed in paragraph 8.1) to calculate the area under the empirical curve between f_{1} and f_{2}. In Example 1 we have, (see Figure 3):
$\operatorname{PAUC}(0,2 ; 0,5)=$ area. $A+$ area. B

$$
\begin{aligned}
& =(0,2 \times 0,7)+0,1 \times(0,7+0,9) / 2 \\
& =0,14+0,08=0,22 .
\end{aligned}
$$

The index is then

$$
\begin{aligned}
\hat{\mathrm{I}}_{\mathrm{PAUC}}= & \frac{1}{2}\left[1+\frac{0,22-0,3(0,2+0,5) / 2}{0,3(1-(0,2+0,5) / 2)}\right]=\frac{1}{2}\left[1+\frac{0,22-0,105}{0,195}\right] \\
& =0,795 .
\end{aligned}
$$

9. Confidence intervals for AUC

9.1 Empirical methods:

According to Krzanowski \& Hand (2009), an asymptotic expression (i.e., when n_{S} and n_{N} are large) for the variance of AUC can be obtained from the Mann-Whitney statistic (in (18)):
$S^{2}(A \hat{U} C)=\frac{1}{n_{S} n_{N}}\left[A U C(1-A U C)+\left(n_{S}-1\right)\left(Q_{1}-A U C^{2}\right)+\left(n_{N}-1\right)\left(Q_{2}-A U C^{2}\right)\right]$,
where Q_{1} is the probability that the scores, X_{S}, of two randomly chosen individuals from population S exceed the score X_{N} of a randomly chosen individual from population N. Conversely, Q_{2} is the probability that the score, X_{S}, of a randomly chosen individual from population S exceeds both scores, X_{N}, of two randomly chosen individuals from population N. By expressing Q_{1} as $A U C /(2-A U C), Q_{2}$ as $2 A U C^{2} /(1+A U C)$ (see Krzanowski \& Hand 2009: 79) and substituting AUC with $A \hat{U} C$ in (20), we have

$$
\begin{equation*}
S^{2}(\hat{A U C})=\frac{1}{n_{S} n_{N}}\left[A \hat{U C}(1-A \hat{U C})+\left(n_{S}-1\right) \frac{A \hat{U C}(1-A \hat{U C})^{2}}{2-A \hat{U C}}+\left(n_{N}-1\right) \frac{A \hat{U C}(1-A \hat{U C})}{1+A \hat{U C}}\right] \tag{21}
\end{equation*}
$$

The $(1-\alpha) 100 \% \mathrm{CI}$ for AUC is then:
$1-(1-\mathrm{AUC}) \exp \left\{ \pm \mathrm{z}_{\alpha / 2} \mathrm{~S}(\hat{\mathrm{~A} U C}) /(1-\mathrm{A} \hat{U C})\right\}$.

This Cl can be calculated with the aid of the ROCKIT program.

9.2 Other methods:

Krzanowski \& Hand (2009) discuss a method based on "placement values" and empirical likelihoods. More information can be found in their paragraph 3.5.1.

10. Choice of the optimal cut-off point

The ROC-curve shows, for a sequence of cut-off values (t), the relationship between the proportion of true positives $(t p)$ versus the proportion of false positives $(f p)$. The question now is whether or not there is an optimal value for t ?

Consider the Youden index:

$$
\begin{aligned}
\mathrm{YI} & =\max (t p-f p) \\
& =\max (t p+t n-1),
\end{aligned}
$$

i.e., the maximum value of the sum of the sensitivity $(t p)$ and specificity $(t n)$ minus 1 . This index, like the AUC, is a descriptive measure of the ROC-curve. The optimal value of the cut-off point t is thus obtained when the sum $t p+t n$ is at its maximum.

Remarks:

(a) For a given $t: F(t)=\mathrm{P}\left(\mathrm{X}_{N} \leq t\right)=t n$ and

$$
G(t)=\mathrm{P}\left(\mathrm{X}_{S} \leq t\right)=1-t p
$$

it follows that

$$
\begin{aligned}
\mathrm{YI} & =\max (t p+t n-1) \\
& =\max _{t}(F(t)-G(t)) .
\end{aligned}
$$

(b) Another index that is also used is the maximum vertical distance (MVD):

$$
\begin{aligned}
\text { MVD } & =\max _{t}|P(X>t \mid S)-P(X>t \mid N)| \\
& =\max _{\mathrm{t}}|1-G(t)-(1-F(t))| \\
& =\max _{\mathrm{t}}|F(\mathrm{t})-G(\mathrm{t})|
\end{aligned}
$$

which is identical to YI if $F(t) \geq G(t)$, for all t. MVD is also known as the Kolmogorov-Smirnov measure which is used to compare two distribution function $F(t)$ and $G(t)$.
(c) YI >0 implies that $F(t) \geq G(t)$ for each t, which means that the distribution of X_{S} lies largely to the right of the distribution of X_{N} (see, for example, Figure 1). If $\mathrm{YI} \leq 0$ it means that the screening test is no better than simply randomly classifying individuals as positive or negative.

The estimated optimal t can thus be found where the estimated difference $\hat{F}(t)-\hat{G}(t)$ is a maximum. The following four methods for determining the optimal t (denoted by t^{*}) are discussed by Krzanowski \& Hand (2009), paragraph 9.4:
10.1 binormal method:

When F and G are both normal

$$
\mathrm{YI}=\max _{\mathrm{t}}\left[\Phi\left(\frac{\mathrm{t}-\mu_{\mathrm{N}}}{\sigma_{\mathrm{N}}}\right)-\Phi\left(\frac{\mathrm{t}-\mu_{\mathrm{S}}}{\sigma_{\mathrm{S}}}\right)\right],
$$

which, after setting the first derivative to zero and solving, we get:
$t^{*}=\frac{\mu_{S} \sigma_{N}^{2}-\mu_{N} \sigma_{S}^{2}-\sigma_{N} \sigma_{S} \sqrt{\left(\mu_{N}-\mu_{S}\right)^{2}+\left(\sigma_{N}^{2}-\sigma_{S}^{2}\right) \ln \left(\sigma_{N}^{2} / \sigma_{S}^{2}\right)}}{\left(\sigma_{N}^{2}-\sigma_{S}^{2}\right)}$.

If $\sigma_{N}^{2}=\sigma_{S}^{2}=\sigma^{2}$, then $t^{*}=1 / 2\left(\mu_{N}+\mu_{S}\right)$, i.e., the optimal value lies halfway between the means of the distributions and where the normal density functions intersect each other (see Figure 4).

Figure 4:

To estimate t^{*} with $\hat{t^{*}}$, the estimators $\hat{\mu_{N}}, \hat{\mu_{S}}, \hat{\sigma_{N}^{2}}$ and $\hat{\sigma_{S}^{2}}$ are substituted in (23).

10.2 Transformed normal method:

The assumption that $G(t)$ and $F(t)$ are normally distributed is sometimes unrealistic which means that, like in the estimation of the ROC-curve, an appropriate monotone transformation (Box-Cox transformation) can be applied to X to achieve normality. Just as the ROC-curve is invariant under monotone transformations, YI is also invariant. The optimal value t^{*} can then be determined as in paragraph 10.1, but on the distribution of Y , after which it can be back-transformed in terms of X.

10.3 Empirical method:

F and G can be estimated with their empirical distribution functions

$$
\begin{equation*}
\hat{\mathrm{F}}(\mathrm{t})=\mathrm{n}_{\mathrm{N}(\mathrm{t})}^{\prime} / \mathrm{n}_{\mathrm{N}} \tag{24}
\end{equation*}
$$

$$
\hat{\mathrm{G}}(\mathrm{t})=\mathrm{n}_{\mathrm{s}(\mathrm{t})}^{\prime} / \mathrm{n}_{\mathrm{s}}
$$

where $\mathrm{n}^{\prime}{ }_{\mathrm{A}(\mathrm{t})}$ is the number of individuals from population A such that its X values are smaller than or equal to t.

The value \hat{t}^{*} is then the t-value in a sequence of values that makes $\hat{F}(t)-\hat{G}(t)$ a maximum.

10.4 Kernel estimation methods:

Here $F(t)$ and $G(t)$ are determined using kernel estimators of the density functions f_{s} and f_{g} (see the nonparametric estimation of ROC-curves discussed above).

11. Adjustment of ROC-curves

Suppose that the screening test's result X is influenced by other variables, it can be that adjusting X for these variables (called covariates) can weaken or improve the prediction ability. An example is when the waist circumference of a person is used as a screening test for hypertension and then adjusted for age and gender. Paragraph 5.2 in Krzanowski \& Hand (2009) provides two approaches for doing this: indirect and direct adjustment.

11.1 Indirect adjustment:

Consider the following linear relationships:

$$
\begin{align*}
& X_{N}=\alpha_{N}+\beta_{N 1} Z_{N 1}+\beta_{N 2} Z_{N 2}+\cdots+\beta_{N k} Z_{N k}+\varepsilon_{N} \\
& X_{S}=\alpha_{S}+\beta_{S 1} Z_{S 1}+\beta_{S 2} Z_{S 2}+\ldots+\beta_{S m} Z_{S m}+\varepsilon_{S}, \tag{25}
\end{align*}
$$

where α_{N} and α_{S} are intercept constants and $\beta_{N 1}, \cdots, \beta_{N k}$ and $\beta_{S 1}, \cdots, \beta_{S m}$ are the regression coefficients of the k covariates $Z_{N 1}, \cdots, Z_{N k}$ and m covariates $Z_{S 1}, \cdots, Z_{S m}$ and ε_{N} and ε_{S} are normally distributed with zero mean and variance σ_{N}^{2} and σ_{S}^{2}.

This is once again the binormal model where the differences between the means of X_{N} and X_{S} now vary for different values of $\mathrm{Z}_{\mathrm{N} 1}=\mathrm{z}_{\mathrm{N} 1}, \cdots, \mathrm{Z}_{\mathrm{Nk}}=\mathrm{z}_{\mathrm{Nk}}$ and $\mathrm{Z}_{\mathrm{S} 1}=\mathrm{z}_{\mathrm{S} 1}, \cdots, \mathrm{Z}_{\mathrm{Sm}}=\mathrm{z}_{\mathrm{Sm}}$ in the following way:

$$
\mu_{n}=\alpha_{N}+\beta_{N 1} z_{N 1}+\ldots .+\beta_{N k} z_{N k}
$$

and

$$
\begin{equation*}
\mu_{s}=\alpha_{s}+\beta_{s 1} z_{s 1}+\ldots+\beta_{s m} z_{S m} . \tag{26}
\end{equation*}
$$

The ROC-curve is thus obtained from this set of Z-values using (7) and (8) above and from the AUC in (9). Further, the optimal cut-off point t^{*} can be determined from (23) for each given set of Z-values.

Figure 5 illustrates the adjustments on μ_{N} and μ_{S} in the case where "Age", Z, is a common covariate. For a given value $\mathrm{Z}=\mathrm{z}_{\mathrm{O}}=40, \mu_{N}$ is estimated by $\hat{\mu}_{N}(40)$ as 0.48 , which is lower than $\hat{\mu}_{N}$, which was found to be 0.59 (obtained by evaluating $\hat{\mu}_{N}(51.0)$, i.e., at the mean value $z=51.0$), the mean value of the sample from population N. The value $\hat{\mu}_{\mathrm{N}}(40)$ is obtained from the linear regression equation $\mathrm{x}=0.085+0.0099 \mathrm{z}$ at $\mathrm{z}=40$. Similarly, $\hat{\mu}_{\mathrm{S}}(40)=0.80$ is obtained from the regression equation $\mathrm{x}=0.1669+0.0157 \mathrm{z}$ at $\mathrm{z}=40$, which is lower than the sample mean $\hat{\mu}_{S}=0.88$ (obtained by evaluating $\hat{\mu}_{\mathrm{S}}(51)$, i.e., at the mean value $z=45.5$). The strength of linear relationship with Age is stronger in population S than population N . This is clear because the gradient of population $\mathrm{S}, \beta_{1}=$ 0.016 , is larger than the gradient for population $\mathrm{N}, \beta_{2}=0.010$. The variances σ_{N}^{2} and σ_{s}^{2} measure the vertical variation of observations around the regression line and are, in general, smaller than the usual variances where no relationship with Z is assumed. Comparing the variances we see that it is 0.0014 vs. 0.034 for population N and 0.0065 vs. 0.077 for population S.

Figure 5:

Estimation of ROC-curves and AUC is then done by replacing $\alpha_{N}, \beta_{N 1}, \cdots, \beta_{N k}$ and $\alpha_{S}, \beta_{S 1}, \cdots, \beta_{S m}$ with their least squares estimators. These are easily obtained by fitting a multiple linear regression of X_{N} on $Z_{N 1}, \cdots, Z_{N k}$ and X_{S} on $Z_{S 1}, \cdots, Z_{S k}$ using any statistical software package (like, for example, Statistica or SPSS). Further, the estimated values of σ_{N} and σ_{S} represent the standard error of estimation of these multiple regression models. In the case where one has only one covariate for each X_{N} and X_{S}, then Faraggi (2003) provides the following approximate $(1-\alpha) 100 \%$ confidence interval for AUC for given Z_{N} and Z_{s} values (denoted by z_{N} and z_{s}):

$$
\begin{equation*}
\operatorname{AUC}\left(z_{N}, z_{S}\right) \pm\left\{\frac{1}{\hat{M}\left(z_{N}, z_{S}\right)}+\frac{\left(\operatorname{AUC}\left(z_{N}, z_{S}\right)\right)^{2}}{2 \hat{f}}\right\} z_{\alpha / 2} \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{M}\left(z_{N}, z_{S}\right)=\frac{\hat{\sigma_{N}^{2}}+\hat{\sigma_{S}^{2}}}{\hat{a_{N}^{2}} \hat{\sigma_{N}^{2}+\hat{a_{S}^{2}} \hat{\sigma_{S}^{2}}}, ~} \tag{28}
\end{equation*}
$$

with

$$
\begin{equation*}
\hat{\mathrm{a}_{\mathrm{N}}^{2}}=\frac{1}{\mathrm{n}_{\mathrm{N}}} \sum_{\mathrm{i}=1}^{\mathrm{n}_{\mathrm{N}}}\left(\mathrm{z}_{\mathrm{Ni}}-\mathrm{z}_{\mathrm{N}}\right)^{2} /\left[\left(\mathrm{n}_{\mathrm{N}}-1\right) \mathrm{S}_{\mathrm{Z}_{\mathrm{N}}}^{2}\right] \tag{29}
\end{equation*}
$$

and

$$
\hat{\mathrm{a}_{\mathrm{s}}^{2}}=\frac{1}{\mathrm{n}_{\mathrm{s}}} \sum_{\mathrm{i}=1}^{\mathrm{n}_{\mathrm{s}}}\left(\mathrm{z}_{\mathrm{Si}}-\mathrm{z}_{\mathrm{s}}\right)^{2} /\left[\left(\mathrm{n}_{\mathrm{s}}-1\right) \mathrm{S}_{\mathrm{z}_{\mathrm{s}}}^{2}\right] .
$$

Here $S_{Z_{N}}^{2}$ and $S_{Z_{S}}^{2}$ are the variances of the samples values of Z_{N} and Z_{S}.
Further, we have that

$$
\begin{equation*}
\hat{\mathrm{f}}=\frac{\hat{\sigma}_{\mathrm{N}}^{2}+\hat{\sigma}_{\mathrm{S}}^{2}}{\hat{\sigma}_{\mathrm{N}}^{4} /\left(\mathrm{n}_{\mathrm{N}}-1\right)+\hat{\sigma}_{\mathrm{S}}^{4} /\left(\mathrm{n}_{\mathrm{S}}-1\right)} . \tag{30}
\end{equation*}
$$

When one has multiple covariates Faraggi (2003) generalises the Cl in (27) and also provides a method for determining Cls for YI and t^{*} using parametric bootstrap methods.

If the error term ε_{N} and ε_{S} in (25) cannot be assumed to be normally distributed, then Faraggi (2003) states that an appropriate Box-Cox transformations (based on an investigation of the residuals of the multiple regression) should be applied to X_{N} and X_{S} in an attempt to make the distributions of ε_{N} and ε_{S} more normal.

Krzanowski \& Hand (2009) refer to more methods that can be used when one cannot assume normality of ε_{N} and ε_{S}, as well as methods more general than least squares for estimating $\mu_{N}, \mu_{S}, \sigma_{N}^{2}$ and σ_{S}^{2} when they are functions of the regression parameters.

11.2 Direct adjustment:

Without providing any details, the reader is referred to the ROC-GLM model of the form:

$$
h(y)=b(x)+\beta_{1} Z_{1}+\cdots+\beta_{k} Z_{k}+\varepsilon
$$

where h and b are unknown monotone functions of the sensitivity y and specificity x, while Z_{1}, \cdots, Z_{k} are covariates. Krzanowski \& Hand (2009) provide various references to methods that directly estimate the ROC curve by including the covariates (see their paragraph 5.2.2). They then also discuss methods of adjusting the AUC using the regression model

$$
h(A U C)=\alpha+\beta_{1} Z_{1}+\cdots+\beta_{k} Z_{k}+\varepsilon
$$

where h is a strictly monotone transformation on AUC (which lies on ($0 ; 1$) to make it lie on $(-\infty ; \infty)$. An example of h is the logistic function:

$$
h(x)=\log \frac{x}{1-x} .
$$

Example 2:

A possible screening test for testing the blood sugar levels of 81 black, male teachers in the NW province is to measure the circumference of their waists. There were 31 men whose Na F-Glucose levels were above the cut-off point of $5.6 \mathrm{mmol} / \mathrm{litre}$. These individuals were thus "positive" and represent the sample from population S. The remaining 50 individuals were "negative" and represent the sample from population N.

Figure 6 displays the histograms of the two samples (ROC=1 : from $S, \mathrm{ROC}=2$: from N) with interval midpoints $70,80, \cdots, 150$, while Table 2 provides the descriptive statistics of each sample. Figure 7 shows the normal probability plot of each sample. We see from these plots that we can accept normality of these populations. Figure 8 confirms this by showing that the best Box-Cox transformation does little to improve on normality.

Figure 6:

Figure 7:

冈

Table 2:

Breakdown Table of Descriptive Statistics (SABPA 2008 FINAL _ 2010-28 Oktober 2010.sta) $\mathrm{N}=81$ (No missing data in dep. var. list) Include condition: gender=1								
NaF glucose cut off for ROC	Waist Av Means	Waist Av N	Waist Av Std.Dev.	Waist Av Minimum	Waist Av Maximum	Waist Av Q25	Waist Av Median	Waist Av Q75
1	98.38376	31	13.78994	75.83333	128.8333	87.53333	100.9000	105.2667
2	90.45800	50	17.28545	61.50000	141.5333	77.00000	88.3333	102.1000
All Grps	93.49132	81	16.41170	61.50000	141.5333	80.66667	91.9667	104.3333

Figure 8:
\square

Subsequently, the ROC-curve is determined using the empirical method of SPSS (SPSS Inc. (2007)) and is shown in Figure 9. Table 3 (SPSS output) supplies the area under the ROC curve (AUC), calculated from the Mann-Whitney statistic, together with the standard error and a $95 \% \mathrm{Cl}$. The lower bound of 0.537 indicates that the AUC is indeed significantly higher than 0.5 .

Table 3:

Test Result Variable(s):Waist Circumference

			Asymptotic 95\% Confidence Interval	
Area	Std. Error ${ }^{\text {a }}$			
.656	.061	Asymptotic Sig. ${ }^{\text {b }}$.018	Lower Bound

The test result variable(s): Waist Circumference has at least one tie between the positive actual state group and the negative actual state group. Statistics may be biased.
a. Under the nonparametric assumption
b. Null hypothesis: true area $=0.5$

Figure 9:

Diagonal segments are produced by ties.

By assuming normality and using the binormal model, Figure 10 displays the output obtained from the ROCKIT program when applied to the data. At (A) in Figure 10 we find the estimated parameters a and b, and $\operatorname{AUC}(A z)$ is the AUC value according to (9), while AUC (Wilc) corresponds to the value given in the Mann-Whitney test (also called the Wilcoxon test). At (B) we find the standard error of a and b along with the correlation between a and b from which the variance V in (17) can be calculated to ultimately obtain a CI for $t p$ for given values of $f p$. At (C) 95\% CIs for a, b and AUC are given. The latter agrees with the output given in SPSS.

Figure 10:

$\begin{array}{lllll}109.10 & 110.67 & 112.10 & 118.57 & 126.63\end{array}$

```
Maximum Likelihood Estimation of the Parameters
    a Single Binormal ROC Curve
```

Name of Input File being used: Glukose.prn.txt29

Condition 1: Glucose
Total number of actually-negative cases $=50$.
Total number of actually-positive cases $=31$.
Data collected on a nominally continuous scale.
Larger values of the test result represent stronger evidence that the case is actually-positive (e.g., that the patient is actually abnormal)

Operating Points Corresponding to the Input Data Categorized by the LABROC5 Scheme:

FPF:	.000	.100	.160	.240	.240	.260	.260	.280	.300	.360	.360
TPF:	.000	.129	.226	.290	.387	.387	.516	.516	.581	.613	.645
FPF:	.380	.400	.400	.560	.560	.640	.640	.680	.780	1.000	
TPF:	.710	.710	.742	.742	.774	.774	.806	.871	1.000	1.000	

Initial Estimates of the Binormal ROC Parameters:
$a=.7608$
$b=1.0627$

Procedure Converges after 5 Iterations
===
Final Estimates of the Binormal ROC Parameters
==

Binormal Parameters and Area Under the Estimated ROC :

a	$=$.7411
b	$=$	1.4932
Area (Az)	$=$.6600
Area (Wilc)	$=$.6565

Table 4:

Estimated Binormal ROC curve, with Lower and Upper Bounds of the Asymmetric Point-wise 95\% Confidence Interval for True-Positive Fraction at a Variety of False-Positive Fractions:

FPF	TPF	(Lower Bound	Upper Bound
. 005	. 0009	(0.0000	, . 0500
. 010	. 0031	(0.0000	. 0797
. 020	. 0100	(. 0002	. 1262
. 030	. 0193	(. 0008	. 1648
. 040	. 0305	(. 0019	. 1989
. 050	. 0431	(. 0036	. 2299
. 060	. 0569	(. 0060	. 2587
. 070	. 0717	(. 0091	. 2857
. 080	. 0873	(. 0131	. 3112
. 090	. 1036	(. 0180	. 3355
. 100	. 1204	(. 0236	. 3588
. 110	. 1377	(. 0301	. 3812
. 120	. 1554	(. 0374	. 4028
. 130	. 1734	(. 0456	. 4237
. 140	. 1916	(. 0544	. 4439
. 150	. 2100	(. 0640	. 4636
. 200	. 3031	(. 1216	. 5542
. 250	. 3953	(. 1906	. 6347
. 300	. 4835	(. 2658	. 7064
. 400	. 6418	(. 4178	. 8249
. 500	. 7707	(. 5567	. 9098
. 600	. 8684	(. 6768	. 9624
. 700	. 9362	(. 7792	. 9886
. 800	. 9771	(. 8662	. 9981
. 900	. 9960	(. 9398	. 9999
. 950	. 9993	(. 9717	1.0000

Figure 11:

True positives (tp) vs. false positives (fp) with 95% confidence intervals

Table 4 shows the ROCKIT output of these CIs for $t p$ (denoted by TPF) for a given sequence of $f p$ values (denoted by FPF). Figure 11 displays the smoothed ROC cure with the 95% CIs (L95, U95). From Table 5 of the ROCKIT output one can construct Figure 12, where the sensitivity $(t p)$ and specificity $(t n)$ are represented as functions of the various cut-off points of waist circumference. If populations N and S had the same variances, then the waist circumference where the two curves intersected would be the optimal cut-off point.

Table 5:

Estimated Relationship between the Critical Test-Result Value (which separates 'positive' results form 'negative' results) and the Corresponding Operating Point on the Fitted Binormal ROC Curve:

Critical Test
(FPF , TPF)
Result Value

111.865	$(.103$,	$.125)$
107.465	$(.159$,	$.227)$
104.200	$(.215$,	$.331)$
102.885	$(.243$,	$.382)$
101.715	$(.252$,	$.399)$
100.450	$(.291$,	$.468)$
99.865	$(.301$,	$.485)$
97.335	$(.331$,	$.535)$
94.980	$(.372$,	$.600)$
94.080	$(.382$,	$.615)$
91.820	$(.414$,	$.662)$
91.435	$(.425$,	$.677)$
90.800	$(.437$,	$.692)$
87.765	$(.527$,	$.800)$
87.365	$(.538$,	$.812)$
83.950	$(.585$,	$.856)$
83.200	$(.597$,	$.866)$
80.370	$(.648$,	$.905)$
75.715	$(.791$,	$.975)$

Figure 11:

If one assumes that the Age is related to the Waist Circumference, then the ROC curve can be adjusted for it. Figure 13 shows the STATISTICA output of a linear regression of each of X_{N} and X_{S} on Z (Age). It would seem that a normal person $($ ROC $=2)$ has practically no linear relationship with the age variable $\left(r^{2}=0.054\right)$, while the high blood pressure group $(R O C=1)$ shows some relationship ($r^{2}=0.186$). Table 6 shows the results of the adjustment using the indirect method. The intercept and regression coefficient for the group with high blood pressure and the normal group, as well as the standard error of estimation of the regression analysis serve as the input for an EXCEL worksheet "Calculate a and $b . x l s x$ " which can then be used to calculate the adjusted mean, and a and b. The AUC is then calculated from a and b, while the optimal cut-off point is determined using (23). The calculations are done at Age 30, the mean Ages of the two samples (44.52 and 41.48), and also at 50. It is clear that the AUCs remain reasonably
constant for the mean Age and at 50, but that they are considerably smaller for 30-year olds. Therefore, the optimal cut-off point is also considerably smaller (73.2).

Figure 13:

	NaF glucose cut Summary Stati Include conditio
Statistic	Value
Multiple R	0.431769082
Multiple R ${ }^{2}$	0.18642454
Adjusted R ${ }^{2}$	0.158370214
F $(1,29)$	6.64512628
p	$0.015290368 ₹$
Std.Err. of Estimate	12.6509464

$\mathrm{N}=31$	NaF glucose cut off for ROC=1 Regression Summary for Dependent Variable: Waist Av $\mathrm{R}=.43176908 \mathrm{R}^{2}=.18642454$ Adjusted $\mathrm{R}^{2}=.15837021$ $F(1,29)=6.6451 p<.01529$ Std.Error of estimate: 12.651 Include condition: gender=1					
	b^{*}	$\begin{gathered} \hline \text { Std.Err. } \\ \text { of } b^{\star} \end{gathered}$	b	Std.Err. of b	t(29)	p-value
Intercept			61.6716	$14.421 €$	4.27631	0.00018
AGE	0.43176	$0.1674 ¢$	0.8246	0.3199	2.57781	0.0152 S

$\mathrm{N}=50$	NaF glucose cut off for ROC=2 Regression Summary for Dependent Variable: Waist Av (SA $\mathrm{R}=.23243915 \mathrm{R}^{2}=.05402796$ Adjusted $\mathrm{R}^{2}=.03432021$ $F(1,48)=2.7415 p<.10430$ Std.Error of estimate: 16.986 Include condition: gender=1					
	b*	Std.Err. of b^{*}	b	Std.Err. of b	t(48)	p-value
Intercept			71.60351	11.6379:	6.15257i	0.000001
AGE	$0.23243!$	0.14038	0.4545	0.2745:	1.65573!	0.104301

Finally, the means and standard deviations of the groups without any adjustments are used to determine the AUC and the optimal cut-off. The AUC of 0.64 at Age 50 does not differ very much from the AUC at the mean age (0.646), or the ROCKIT program's value (0.66), and the Mann-Whitney value (0.656). In practice, one would be able to calculate (without the availability of ROCKIT or SPSS) the means and standard deviations of the two samples if one were to assume normality of the data.

Table 6:

References:

Kline, R. B. (2004). Beyond significance testing. Reforming data analysis methods in behavioral sciences. American Psychological Association, Washington, DC

Faraggi, D. (2003). Adjusting receiver operating characteristic curves and related indices for covariates. The Statistician, 52, 179-192

Krzanowski, W. J. \& Hand, D. J. (2009). ROC curves for continuous data. Chapman \& Hall, Boca Raton

Metz, C. E., Herman, B. A. \& Shen, J. (1998). Maximum likelihood estimation of receiver operating characteristic (ROC) curves from continuous distributed data. Statistics in Medicine, 17, 1033 - 1053

SPSS Inc. (2007). SPSS® 16.0 for Windows, Release 16.0.0, Copyright® by SPSS Inc., Chicago, Illinois. www.spss.com

StatSoft, Inc. (2011). STATISTICA (data analysis software system), version 10.

