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Using ROC-analysis to determine correct on continuous variables. 

 

H. S. Steyn 

Statistical Consultation Service 

 

 

 1. Sensitivity, Specificity and Predicted values (Kline, 2004a) 

 

Suppose that a disease or abnormality is studied and individuals are categorized as 

“positive” if they exhibit the disease or abnormality and “negative” otherwise. Other 

examples include clinical psychologists that would like to classify individuals as depressive 

or normal, or a bank that want to classify clients asking for loans as being potentially risky 

or not.  These classifications are typically made through the use of  “gold standard” 

diagnostic tests that are possibly expensive and/or time-consuming. If a method (also 

called a screening test) existed to identify the diseased/abnormal/risky individuals, that 

was simpler and cheaper than the “gold standard”, then it would be important to know how 

trustworthy it was as a predictor for diseased/abnormal/risky individuals. In further 

discussion we will refer to the population of sick (S) and the non-sick (N) individuals for the 

individuals that have a disease or not, have an abnormality or not, or are considered risky 

or not. Typically the measurements made for these screening tests produce a continuous 

value (i.e., a value that varies over a certain interval) and a cut-off or threshold value is 

often used to classify individuals, e.g., values above the threshold value indicate the 

presence of a disease, while values below it indicate the absence of the disease.  Figure 1 

provides a graphical representation of the distributions of populations S and N’s screening 

test measurements. 
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Figure 1: 

 

 

 

If individuals are classified according to their actual status (according to some golden 

standard) as well by the screening test, then it produces the following 2x2 – frequency 

table: 

 

 Actual status  

Screening test Sick  S  Not-sick )(N  Total 

+ 

- 

A (true pos.) 

C (false neg.) 

B (false pos.) 

D (true neg.) 

A + B (test +) 

C + D (test -) 

Total A + C (sick) B + D (not-sick) N=A+B+C+D 

 

In this table there are A  sick individuals that reacted positively to the screening test.  If it is 

expressed as a proportion of all the sick individuals  CA , then it gives the sensitivity, 

i.e., 

Sensitivity  =  
CA

A


 ,       (1) 
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the proportion of correctly classified positives (i.e., where sick individuals test positively). 

Similarly, there are D  individuals correctly classified as not-sick; when this is 

expressed as a proportion with respect to the total not-sick individuals it is called the 

specificity, i.e., 

Specificity  = 
DB

D


 ,       (2) 

the proportion of correctly classified negatives (i.e., where not-sick individuals test 

negatively). 

 A good screening test should have a high sensitivity as well a high specificity, 

because the opposite would be unfavourable. That is, to classify a sick person as not-sick 

(a total of C individuals) is unfavourable; similarly it is also unfavourable to classify a 

person as being not-sick if they are sick (a total of B individuals). 

 In the populations (as shown in Figure 1) the area under the S -distribution (sick 

individuals) to the right of the cut-off point denotes the sensitivity and the area under the 

N -distribution to the left of the cut-off point is called the specificity.  Ideally the two 

distributions would be completely separated and the cut-off point chosen such that both 

the sensitivity and specificity are equal to 1. 

 

         A  1 100%   confidence interval (CI) for the sensitivity is given by:  

                        /2 (1 ) /( )Sens z Sens Sens A C   , 

Whereas the CI for Specificity is: 

                       / 2 (1 ) /( )Spec z Spec Spec B D   , 

where Sens and Spec are the sensitivity and specificity as given in equations (1) and (2),  

/ 2z  is the  1 / 2
th  percentile of the standard normal distribution. 

 

2. The ROC–curve (Krzanowski & Hand, 2009) 

 

First consider the populations S  and N .  For each cut-off point t , we can construct a 2x2 

– table of probabilities as follows: 
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Populations 

Screening tests S  N   

+ 

- 

 StX |  

 StX |  

 NtX |  

 NtX |  

 

(here X is the screening test). 

 

The values of  StXP | , i.e., the sensitivity or proportion of true positives (tp) versus 

 NtX | , i.e., 1 – specificity or the proportion of false positives (fp), can be plotted on a 

graph for a sequence of cut-off values t . The resulting plot is known as Receiver-

Operating Characteristic curve, or ROC-curve.   

Figure 2 displays some examples of different ROC curves. 

 

Figure 2: 

(a) 
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(b) 

 

  

 

Figure 2(a) is obtained if the populations in Figure 1 are both normally distributed, 

population S  has mean and standard deviation ,1,4  SS   and population N  has 

mean and standard deviation 0N  and  1N .  Here the populations are completely 

separated since the density function of the S  population lies almost entirely to the right of 

the density function of the N  population.  This ROC curve illustrates the near best 

possible curve obtainable; the optimal cut-off point between the two distributions can easily 

be chosen.  The other extreme is illustrated by the diagonal line (dashed line) in Figure 

2(b) where it is used to indicate the hypothetical situation where both distributions are 

assumed to be N  0;1  and thus indistinguishable from one another.   

In this case individuals from each population are equally likely to be classified as positive 

or negative.   

Figure 2(b) also illustrates a ROC-curve (solid line) that could be obtained from a situation 

similar to Figure 1; an appropriate optimal cut-off point can then be chosen from this 

graph. 
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3. Properties of the ROC-curve 

 

1. It is monotone increasing between 0,0  yx  and 1,1  yx , where the x  -axis is   

     associated with the 1-specificity values (fp) and the y -axis is associated with the  

     sensitivity values (tp) for a sequence of cut-off points. 

2. It is invariant to monotone increasing transformations (e.g., the log transformation)  

     on the screening test values. 

3. The gradient of the ROC-curve at cut-off point t  is    tftf NS / , where   tf S  and  

     tf N  are the density functions of population distributions S  and N  in the point t . 

 

4. Area Under the ROC-curve (AUC) 

 

 If one considers Figure 2, it is clear that the area under the ROC-curve in (a) is 

approximately 1, in (b) it is between 0,5 and 1 in the case of the solid line, and exactly 0,5 

in the case of the dashed line.  This “Area Under the Curve” is denoted by AUC and is 

used as a measure of the ability to discriminate between the distributions S and N .  

Larger values of AUC indicate a greater discriminatory ability.  The AUC value 0,5 

indicates that the one is unable to distinguish between S and N . 

 AUC can also be interpreted as follows:  

Suppose that an individual is randomly chosen from each of the populations S  and N  and 

the screening scores are SX  and NX , then: 

    AUC =  NS XX    ,                         (3) 

which means that the AUC is the probability that SX  is larger than NX .  In terms of Figure 

2 this probability is close to 1 if the two populations are easily distinguishable (Figure 2(a)), 

whereas the probability is 0,5 if the population distributions completely overlap (Figure 

2(b)). 

 

Single points and partial areas 

If one is interested in a specific false positive rate (fp = 0x ), then one can use the ROC-

curve to determine the corresponding true positive rate (tp) by reading off the tp at y( 0x ). 

For example, take 0x = 0.05 (i.e., specificity of 0.95) and then use it to find out what the 
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corresponding sensitivity is. In other words, we want to determine what the true positive 

rate would be if most of the normal (not-sick) population is correctly classified as negative.  

 

Sometimes we are only interested in considering tp when fp values lie within a certain 

interval 1 2(f , f ) . A summarizing index is the partial area under the curve (PAUC), i.e., the 

area under the ROC-curve between fp = 1f  and fp = 2f . Depending on the values of 1f  and 

2f , the PAUC can take on any minimum or maximum value between 0 and 1. This makes 

it rather difficult to interpret the PAUC value. 

 

From Figure 2(b) it is clear that the maximum value of the PAUC is the area of the 

rectangle with its base on the interval 1 2(f , f )  =  (0,2; 0,5), i.e., 2 1(f f )  = 0,3, and height 1. 

The minimum size of the area of the trapezium under the diagonal line (i.e., the ROC-

curve associated with the case where one cannot distinguish between populations S  and 

N ) between 1f  and 2f  , is equal to 2 1 1 2

1
(f f )(f f )

2
  , which is equal to 0,3 x 0,7 / 2 = 0,105 

in Figure 2(b).  The following expression is an index between 0 and 1 which can be used 

to interpret the PAUC: 

                 1 2 2 1 1 2
PAUC

2 1 1 2

PAUC(f , f ) (f f )(f f ) / 21
I 1

2 (f f )(1 (f f ) / 2)

   
     

                                  (4) 

(see paragraph 2.4.2, Krzanowaski & Hand, 2009). 

If the ROC-curve’s equation, ( )y x , is known, then the PAUC is given by: 

               
2

1

f

f
PAUC y(x)dx  ,                                                                             (5) 

i.e., the integral of the function ( )y x  between 1f  and 2f . 

 

5. The binormal model 

 

 If the populations S  and N  are each normally distributed, then the ROC-curve can 

be formulated as follows: 

 Define the 1-specificity at cut-off point t  as   tx  NtX |  and the sensitivity at t  

as y  t =  StX | .  Suppose that S  has a  2,S SN    distribution and that N  has a 

 2, NNN 
 distribution, then  
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N

N

N

N tt
tx







, 

where   is a standard normal random variable and    is the standard normal distribution 

function.  Let xz  be the value of   such that the distribution function evaluated in this point 

is  tx , then it follows that 

  xz = 1   tx =
N

N t


 

, 

and therefore  

  N N xt = μ -σ z .                       (6) 

Similarly,  

  






 


S

S t
ty




 ,  

so that from (6) is follows that: 

  S N N x

S

μ - μ +σ z
y t =Φ =

σ

 
 
 

 xΦ a+bz  ,                                                           (7) 

where 

 
S

NSa


 
  and  

S

Nb



 .                    (8) 

Note that 0a   NS     and .0b  

 

Further, AUC =   NS XX     

  =   0  S NX X  

  =  


















22
NS

NS




 

  =  S N

2 2
S N

-μ + μ
1-Φ

σ +σ

 
 
 
 

 

  =  
S N

2 2
S N

μ - μ
Φ

σ +σ
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  =  











21 b

a
.        (9) 

 

6. Estimation of ROC-curves 

 

6.1 The empirical estimator: 

 

The true positive rate for cut-off point t  is   

tp =  StX |  , 

whereas the false positive rate is given by  

   |fp X t N    . 

The obvious or natural estimators for these rates are based on random samples from the 

populations S and N  are given by: 

  S(t )

S

n
tp

n



                   (10) 

and 

  N(t)

N

n
fp

n



 ,                 (11) 

where  tAn  is the number of individuals drawn from population A  where the screening 

test’s values were greater than t , while Sn and Nn  are the sample sizes. 

 

By varying t  between the largest value of X  in the sample to the smallest value, one can 

calculate tp


 and fp


.  The plot of the different points ,fp tp
  

 
 

 obtained in this way produces 

the empirical ROC-curve. 

 

Example 1:  Krzanowski & Hand (2009) provide the following example on p.42: 

 Suppose that a sample of 10 individuals is drawn from each of the populations 

N and S , and the ordered values of the screening test are: 

N : 0,3   0,4   0,5   0,5   0,5   0,6   0,7   0,7   0,8   0,9 
 

S : 0,5   0,6   0,6   0,8   0,9   0,9   0,9   1,0   1,2   1,4  
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This data can be visualised in the following dot plot: 

 

Table 1 shows the values of fp


 and tp


 for a sequence of cut-off points t : 

 

Table 1:  Coordinates of the empirical ROC-curve 

t  fp


 tp


 

   1,4 0,0 0,0 

     1,2 0,0 0,1 

     1,0 0,0 0,2 

     0,9 0,0 0,3 

     0,8 0,1 0,6 

     0,7 0,2 0,7 

     0,6 0,4 0,7 

     0,5 0,5 0,9 

     0,4 0,8 1,0 

     0,3 0,9 1,0 

<   0,3 1,0 1,0 
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Figure 3: Empirical ROC-curve 
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6.2 Estimation of the binormal model: 

 

The values of a  and b in (8) can be estimated using the method of maximum likelihood 

because we assume that the populations S and N  are both normally distributed.  The 

method given in Metz et al. (1998) can be used here (with the aid of the MS Windows 

program ROCKIT, freely available for download at 

http://labs.fhcrc.org/pepe/dabs/software.html). 

 

To ensure that the assumption of normality is appropriate, each sample’s screening test 

value can be transformed using the Box-Cox transformation. This involves a power 

transformation as follows: 
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1
, 0

,

log , 0

 
  

  

X
Y X

X







 

where   is chosen such that Y is normally distributed.   Statistica (Statsoft Inc., 2009) can 

be used to perform this transformation.  Note that this class of transformations is 

monotone increasing; this implies that the ROC-curve will remain unchanged.  In cases 

where the sample shows evidence of a multi-modal distribution, the Box-Cox 

transformation cannot be used.  Further, it is important to note that the same 

transformation should be applied to both samples. If the needed transformations differ 

greatly in the two samples then one should rather not use a transformation at all; in this 

case one should treat the binormal model with extreme caution. 

 

6.3 Nonparametric estimation of ROC: 

 

If no assumptions can be made regarding the distribution of the screening test, X , for the 

populations S and N , then it is possible to obtain estimates of the density functions Sf  

and Nf  using kernel density estimators and then to estimate  StXP |  and   NtXP |  

with smoothed functions.  This method is described in paragraph 3.3.3 of Krzanowski & 

Hand (2009) where an example of a ROC-curve plotted with the help of the LABROC 

program is shown.  

 

7. Confidence intervals for ROC-curves  

 

7.1 Empirical methods: 

The empirical ROC-curve is a plot of the points ,fp tp
  

 
 

 for each cut-off point  t .  The 

question is now: how accurately do fp


 and tp


 estimate the true proportion of false 

positives and true positives?  Confidence intervals (CIs) for fp  and tp  can shed some light 

on this issue; there are three possibilities: 

(a) A CI for tp  for a given fp  (a vertical interval around tp


 at a given point on the 

horizontal axis of the ROC graph). 
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(b) A CI for fp for a given tp  (a horizontal interval around fp


 at a given point on 

the vertical axis of the ROC graph).                      

(c) A CI for  ,fp tp  for a given cut-off point , t .  Since fp


 and tp


 are both 

proportions and they are independent of one another for a given t , one can 

construct separate binomial CIs for fp  and tp  (horizontal and vertical 

intervals around ,fp tp
  

 
 

). A joint  1 100% confidence region for the pair 

 ,fp tp  follows from the independence of fp


 and tp


, and is given by the 

rectangle with midpoint ,fp tp
  

 
 

and sides formed by the  ~1 100% CIs, 

where   11~  .                                   

 

The 100 )1(  % CI in case (c) above is given for each t : 

For tp :              
( )ˆ ˆ

ˆ α/2
S

tp 1- tp
tp± z

n
 .                              (12) 

 

For fp :                
( )ˆ ˆ

ˆ α/2
N

fp 1- fp
fp± z

n
 .       (13)  

 

For  , :fp tp   rectangle with ,fp tp
  

 
 

 as its midpoint and side lengths given by (12) and 

(13), but where ~  is used instead of  . 

 

The CIs in cases (a) and (b) also depend on the density functions of the populations S and 

N  and can be determined with the aid of kernel density estimation (see Krzanowski & 

Hand, 2009:  paragraph 3.4.1). 
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7.2 Binormal method: 

Along with the maximum likelihood estimators 


a  and 


b  for a  and b  in (8), the ROCKIT 

program also provides the values of ˆVar(a) , ˆ( )Var b  and ˆˆ( , )Cov a b . 

 Now, since the variance of ˆˆ xa b z  is given by  

  ˆ ˆˆ ˆ(a) 2
x xV =Var +z Var(b)+2z Cov(a,b)  ,                                             (14) 

it follows that the  1 100% CI for xbza   is given by:                                                       

                      ˆˆ x α/2L,U = a+b z ± z V  ,                  (15) 

so that the CI for tp  given fp  = x  is: 

     Φ U ,Φ L    .        (16) 

Note: 

ROCKIT provides the standard error of â  and b̂, i.e., ˆse(a)  and ˆse(b)  , as well as the 

correlation between 


a  and 


b , i.e.,  ˆˆ( , )r a b  and so we can obtain an expression for V  as 

follows: 

  ˆ ˆ ˆˆ ˆ ˆ     

22

x xV = se(a) + z se(b) +2z se(a)se(b)r(a,b) .                       (17) 

 

7.3 Nonparametric methods: 

 

These methods, described in paragraph 3.4.3 of Krzanowski & Hand (2009), make use of 

the nonparametric estimation of the ROC-curve, kernel density estimators of Sf  and Nf . 

 

8. Estimation of AUC  

 

8.1 Empirical method: 

Since the AUC is simply the area under ROC-curves one can easily determine this by 

making use of the trapezoidal rule; this rule involves determining the sum of trapeziums 

formed when one inserts vertical lines at each point of the empirical curve that run from the 

point on the curve down to the horizontal axis, cf. Figure 3.  This method is unnecessary if 

one makes use of (3) where 



- 15 - 

  AUC=  NS XXP  . 

An estimator for this probability is nothing other than the Mann-Whitney U-statistic, 

expressed as a proportion of all possible pairs of individuals from the populations S and 

,N  where the X -values from individuals in S exceed the values from N . 

Thus  NS nnUAUC /


 ,             (18) 

where  U   is the Mann-Whitney-U -statistic based on two samples of size Sn  and Nn   

from populations S  and N . 

 

 

8.2 Binormal method: 

According to (9) the AUC is estimated as  

 






















b

a
AUC

1

 .        (19) 

 

8.3 Nonparametric method: 

This method also makes use of kernel density estimation; it is described in paragraph 

3.5.1 of Krzanowski & Hand (2009). 

 

8.4     Estimation of partial AUC: 

A parametric estimator of PAUC can be obtained using the binormal model, i.e., from (5) 

and (7) we have: 

                   
2

1

f

xf

ˆˆ ˆPAUC (a bz )dx   . 

The integral can be evaluated using numerical integration techniques. 

Nonparametrically, the PAUC can be determined from the probability 

                 S N 1 N 2P(X X , f 1 F(X ) f )    , 

where F is the distribution function of X in population S. This is similar to the method used 

to calculate the Mann-Whitney statistic. See paragraph 3.5.2 of Krzanowski & Hand, 

(2009) for this method. 
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A simple procedure used in practice is to make use of the trapezoidal rule (discussed in 

paragraph 8.1) to calculate the area under the empirical curve between 1f  and 2f . In 

Example 1 we have, (see Figure 3): 

PAUC(0,2;  0,5) = area. A + area. B 

                           = (0,2 x 0,7) + 0,1 x (0,7 + 0,9) / 2 

                           = 0,14 + 0,08 = 0,22. 

The index is then 

PAUC

1 0, 22 0,3(0, 2 0,5) / 2 1 0, 22 0,105
Î 1 1

2 0,3(1 (0, 2 0,5) / 2) 2 0,195

    
             

            = 0,795. 

 

 

9. Confidence intervals for AUC 

 

9.1 Empirical methods: 

According to Krzanowski & Hand (2009), an asymptotic expression (i.e., when Sn  and Nn                    

are large) for the variance of AUC can be obtained from the Mann-Whitney statistic (in 

(18)): 

          

        2
2

2
1

2 111
1

AUCQnAUCQnAUCAUC
nn

AUCS NS
NS







 

 ,         (20) 

 

where 1Q  is the probability that the scores, SX , of two randomly chosen individuals from 

population S  exceed the score NX  of a randomly chosen individual from populationN .  

Conversely, 2Q  is the probability that the score, SX , of a randomly chosen individual from 

population S  exceeds both scores, NX , of two randomly chosen individuals from 

population N .  By expressing 1Q  as AUC /  AUC2 , 2Q  as  AUCAUC 1/2 2   (see 

Krzanowski & Hand 2009: 79) and substituting AUC with 


AUC  in (20), we have 
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UCA

UCAUCA
n

UCA

UCAUCA
nUCAUCA

nn
AUCS NS

NS 1

1
1

2

1
11

1

22

2

 .    

                                                                                                                                (21) 

The  1 100% CI for AUC is then: 

 

/ 21 1 A UC exp z S A UC / 1 A UC
  


               

      
.                                      (22) 

 

This CI can be calculated with the aid of the ROCKIT program. 

 

 

 

9.2 Other methods: 

Krzanowski & Hand (2009) discuss a method based on “placement values” and empirical 

likelihoods. More information can be found in their paragraph 3.5.1. 

 

10. Choice of the optimal cut-off point 

 The ROC-curve shows, for a sequence of cut-off values  t , the relationship 

between the proportion of true positives  tp   versus the proportion of false positives  fp .   

The question now is whether or not there is an optimal value for t? 

Consider the Youden index: 

   max tp fp    

        max 1tp tn    , 

i.e., the maximum value of the sum of the sensitivity  tp  and specificity  tn  minus 1.  This 

index, like the AUC, is a descriptive measure of the ROC-curve.  The optimal value of the 

cut-off point t   is thus obtained when the sum tp tn  is at its maximum. 
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Remarks: 

(a)   For a given t :        NF t t tn  and 

          1     SG t t tp   , 

           it follows that 

                            max 1tp tn     

                                                       max t F t G t  .   

 

(b) Another index that is also used is the maximum vertical distance (MVD): 

                    MVD =    tmax | X t | S X t | N |     

                             =     tmax |1 G t 1 F t |    

                             =    tmax | F t G t |  , 

           which is identical to  if    tGtF  , for all t .   MVD is also known as the  

           Kolmogorov-Smirnov measure which is used to compare two distribution function  

           tF  and  tG . 

 

(c) 0   implies that    tGtF   for each  t , which means that  the distribution of SX    

            lies largely to the right of the distribution of NX  (see, for example, Figure 1).  If  

           0  it means that the screening test is no better than simply randomly classifying  

            individuals as positive or negative. 

 

The estimated optimal t  can thus be found where the estimated difference    tGtF


  is a 

maximum.  The following four methods for determining the optimal t  (denoted by *t ) are 

discussed by Krzanowski & Hand (2009), paragraph 9.4: 

 

10.1 binormal method: 

 When F  and G  are both normal  

 N S
t

N S

t t
max

     
            

, 

which, after setting the first derivative to zero and solving, we get: 
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22 2 2 2 2 2

*

2 2

ln /    



S N N S N S N S N S N S

N S

t
           

 
 .   (23) 

 

If 222   SN  , then  * ½ N St    , i.e., the optimal value lies halfway between the 

means of the distributions and where the normal density functions intersect each other 

(see Figure 4). 

 

Figure 4: 

 

To estimate *t  with 

*t , the estimators 



N , 


S , 

2
N   and 


2
S   are substituted in (23). 

 

10.2 Transformed normal method: 

The assumption that  tG  and  tF  are normally distributed is sometimes unrealistic which 

means that, like in the estimation of the ROC-curve, an appropriate monotone 

transformation (Box-Cox transformation) can be applied to X  to achieve normality.  Just 

as the ROC-curve is invariant under monotone transformations,  is also invariant. The 

optimal value *t  can then be determined as in paragraph 10.1, but on the distribution of 

 , after which it can be back-transformed in terms of X .     

 

10.3 Empirical method: 

F  and G  can be estimated with their empirical distribution functions 

      NN tF t n ' / n


  

            (24) 
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      SS tG t n ' / n


  , 

where  A tn '  is the number of individuals from population A  such that its X  values are 

smaller than or equal to t . 

The value 

*t  is then the t -value in a sequence of values that makes    tGtF



  a 

maximum. 

 

10.4 Kernel estimation methods: 

Here  tF  and  tG  are determined using kernel estimators of the density functions sf  

and gf  (see the nonparametric estimation of ROC-curves discussed above). 

 

11. Adjustment of ROC-curves    

  Suppose that the screening test’s result X  is influenced by other variables,  it can 

be that adjusting X  for these variables (called covariates) can weaken or improve the 

prediction ability.  An example is when the waist circumference of a person is used as a 

screening test for hypertension and then adjusted for age and gender. Paragraph 5.2 in 

Krzanowski & Hand (2009) provides two approaches for doing this: indirect and direct 

adjustment. 

 

11.1 Indirect adjustment: 

Consider the following linear relationships:  

  NNkNkNNNNNN ZZZX   2211  

            (25) 

  ,S S S1 S1 S2 S2 Sm Sm SX = α + β Z + β Z +....+ β Z + ε      

where N  and S  are intercept constants and 1N , , Nk and 1S , ,  Sm  are the 

regression coefficients of the k  covariates NkN ZZ ,,1   and m  covariates SmS ZZ ,,1   and 

N  and S  are normally distributed with zero mean and variance 2
N  and 2

S  .                        

 

This is once again the binormal model where the differences between the means of NX  

and SX  now vary for different values of N1 N1 Nk NkZ z , , Z z   and S1 S1 Sm SmZ z , , Z z   in 

the following way: 



- 21 - 

      

 

                               n N N1 N1 Nk Nkμ = α + β z + ....+ β z  

and            (26) 

                                   S S S1 S1 Sm Smμ = α + β z + ...+ β z . 

The ROC-curve is thus obtained from this set of Z -values using (7) and (8) above and 

from the AUC in (9).  Further, the optimal cut-off point *t  can be determined from (23) for 

each given set of Z -values. 

 

Figure 5 illustrates the adjustments on N  and S  in the case where “Age”, Z ,  is a 

common covariate. For a given value OZ z  = 40, N  is estimated by  40N̂   as 0.48, 

which is lower than N



 , which was found to be 0.59 (obtained by evaluating  51 0Nˆ .
 
, 

i.e., at the mean value z = 51.0), the mean value of the sample from population N .   The 

value  Nˆ 40  is obtained from the linear regression equation x 0.085 0.0099z    at z 40 .  

Similarly,  Sˆ 40  = 0.80 is obtained from the regression equation x 0.1669 0.0157z   at 

z 40 , which is lower than the sample mean 


S  = 0.88 (obtained by evaluating  Sˆ 51
 
, 

i.e., at the mean value z = 45.5). The strength of linear relationship with Age is stronger in 

population S than population N. This is clear because the gradient of population S, 1  = 

0.016, is larger than the gradient for population N, 2  =  0.010. The variances 2
N  and 2

S  

measure the vertical variation of observations around the regression line and are, in 

general, smaller than the usual variances where no relationship with Z is assumed. 

Comparing the variances we see that it is 0.0014  vs. 0.034 for population N and 0.0065 

vs. 0.077 for population S.  
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Figure 5: 

Age
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Estimation of ROC-curves and AUC is then done by replacing NkNN  ,,, 1   and                                

SmSS  ,,, 1   with their least squares estimators.  These are easily obtained by fitting a 

multiple linear regression of NX  on NkN ZZ ,,1   and SX  on SkS ZZ ,,1   using any statistical 

software package (like, for example, Statistica or SPSS).  Further, the estimated values of 

N and S  represent the standard error of estimation of these multiple regression models.  

In the case where one has only one covariate for each NX  and SX , then Faraggi (2003) 

provides the following approximate  1 100% confidence interval for AUC for given NZ  

and SZ  values (denoted by Nz  and Sz ): 
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where 
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Here 2

NZ
S and 2

SZ
S are the variances of the samples values of NZ  and SZ . 

Further, we have that  

 
   

2 2
N S

4 4
N N S S

ˆ ˆ
f

ˆ ˆ/ n 1 / n 1

  

   

  .     (30)  

 

When one has multiple covariates Faraggi (2003) generalises the CI in (27) and also 

provides a method for determining CIs for   and *t   using parametric bootstrap methods. 

 If the error term N   and  S  in (25) cannot be assumed to be normally distributed, 

then Faraggi (2003) states that an appropriate Box-Cox transformations (based on an 

investigation of the residuals of the multiple regression) should be applied to NX  and SX  

in an attempt to make the distributions of N  and S  more normal. 

 Krzanowski & Hand (2009) refer to more methods that can be used when one 

cannot assume normality of N  and S , as well as methods more general than least 

squares for  estimating 2,, NSN   and 2
S   when they are functions of the regression 

parameters. 

 

11.2 Direct adjustment: 

Without providing any details, the reader is referred to the ROC-GLM model of the form: 

       kk ZZxbyh 11   
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where h  and b  are unknown monotone functions of the sensitivity y  and specificity x , 

while kZZ ,,1   are covariates.  Krzanowski & Hand (2009) provide various references to 

methods that directly estimate the ROC curve by including the covariates (see their 

paragraph 5.2.2). They then also discuss methods of adjusting the AUC using the 

regression model  

   ,11   kk ZZAUCh    

where h  is a strictly monotone transformation on AUC (which lies on (0;1)) to make it lie 

on   ; .  An example of h  is the logistic function:  

  log .
1



x

h x
x

 

 

Example 2:  

A possible screening test for testing the blood sugar levels of 81 black, male teachers in 

the NW province is to measure the circumference of their waists.  There were 31 men 

whose Na F-Glucose levels were above the cut-off point of 5.6 mmol/litre.  These 

individuals were thus “positive” and represent the sample from population S .  The 

remaining 50 individuals were “negative” and represent the sample from population N . 

 Figure 6 displays the histograms of the two samples (ROC=1 : from S , ROC=2 : 

from N ) with interval midpoints 70, 80, , 150, while Table 2 provides the descriptive 

statistics of each sample.   Figure 7 shows the normal probability plot of each sample. We 

see from these plots that we can accept normality of these populations.  Figure 8 confirms 

this by showing that the best Box-Cox transformation does little to improve on normality.  
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Figure 6: 
The linked image cannot be displayed.  The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location.

 
 
 

Figure 7: 

The linked image cannot be displayed.  The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location.
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Table 2: 

Breakdown Table of Descriptive Statistics (SABPA 2008 FINAL _ 2010 - 28 Oktober 2010.sta)
N=81 (No missing data in dep. var. list)
Include condition: gender=1
NaF glucose cut

off for ROC
Waist Av
Means

Waist Av
N

Waist Av
Std.Dev.

Waist Av
Minimum

Waist Av
Maximum

Waist Av
Q25

Waist Av
Median

Waist Av
Q75

1 98.38376 31 13.78994 75.83333 128.8333 87.53333 100.9000 105.2667
2 90.45800 50 17.28545 61.50000 141.5333 77.00000 88.3333 102.1000
All Grps 93.49132 81 16.41170 61.50000 141.5333 80.66667 91.9667 104.3333  

 

Figure 8: 

The linked image cannot be displayed.  The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location.

 

 

 Subsequently, the ROC-curve is determined using the empirical method of SPSS 

(SPSS Inc. (2007)) and is shown in Figure 9.  Table 3 (SPSS output) supplies the area 

under the ROC curve (AUC), calculated from the Mann-Whitney statistic, together with the 

standard error and a 95% CI. The lower bound of 0.537 indicates that the AUC is indeed 

significantly higher than 0.5. 
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Table 3: 

Test Result Variable(s):Waist Circumference 

Area Std. Errora Asymptotic Sig.b

Asymptotic 95% Confidence 
Interval 

Lower Bound Upper Bound 
.656 .061 .018 .537 .776 

The test result variable(s): Waist Circumference has at least one tie between the positive actual 
state group and the negative actual state group. Statistics may be biased. 

a. Under the nonparametric assumption 

b. Null hypothesis: true area = 0.5 

 

 

 

Figure 9: 
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 By assuming normality and using the binormal model, Figure 10 displays the output 

obtained from the ROCKIT program when applied to the data.  At ( A )  in Figure 10 we find 

the estimated parameters a  and b , and AUC  Az  is the AUC value according to (9), while 

AUC (Wilc) corresponds to the value given in the Mann-Whitney test (also called the  

Wilcoxon test).  At (B ) we find the standard error of a  and b  along with the correlation 

between a  and b  from which the variance V in (17) can be calculated to ultimately obtain 

a CI for tp  for given values of fp . At (C ) 95% CIs for a ,b  and AUC are given.  The latter 

agrees with the output given in SPSS. 

 

Figure 10: 

 
                   ROCKIT (Windows95 version 0.9.1 BETA):                       
 
             Maximum Likelihood Estimation of a Binormal ROC Curve 
 
 
                  From CONTINUOUSLY-Distributed Test Results 
 
 
 
 
          ----------------------------------------------------- 
             Original input of   50 Actually-NEGATIVE cases 
          ----------------------------------------------------- 
 
     61.50       63.57       65.50       68.33       70.00 
     72.00       72.33       72.67       72.90       75.50 
     75.60       76.50       77.00       77.33       77.57 
     79.00       80.67       82.67       84.17       85.50 
     87.10       87.20       88.00       88.00       88.10 
     88.57       89.20       89.73       90.27       90.40 
     91.67       93.83       95.63       96.00       96.67 
     97.40      100.00      102.10      104.33      104.83 
    105.53      107.00      109.87      110.00      111.63 
    112.67      115.00      118.33      132.00      141.53 
    
 
 
 
          ---------------------------------------------------- 
             Original input of   31 Actually-POSITIVE cases 
          ---------------------------------------------------- 
 
     75.83       76.50       77.67       80.07       81.17 
     81.67       83.73       87.53       91.20       91.97 
     92.03       94.33       97.27       98.67       99.73 
    100.90      101.17      101.30      101.33      103.67 
    104.00      104.07      105.00      105.27      107.93 
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    109.10      110.67      112.10      118.57      126.63 
    128.83 
    
                                                            
           
 
             Maximum Likelihood Estimation of the Parameters 
                      a Single Binormal ROC Curve 
 
      Name of Input File being used: Glukose.prn.txt29 
 
 
 
      Condition 1: Glucose      
 
      Total number of actually-negative cases =   50. 
      Total number of actually-positive cases =   31. 
 
      Data collected on a nominally continuous scale. 
      Larger values of the test result represent stronger evidence that the 
      case is actually-positive (e.g., that the patient is actually 
abnormal) 
 
 
    Operating Points Corresponding to the Input Data Categorized by the 
LABROC5 Scheme: 
 
    FPF:  .000  .100  .160  .240  .240  .260  .260  .280  .300  .360  .360 
    TPF:  .000  .129  .226  .290  .387  .387  .516  .516  .581  .613  .645 
 
    FPF:  .380  .400  .400  .560  .560  .640  .640  .680  .780 1.000 
    TPF:  .710  .710  .742  .742  .774  .774  .806  .871 1.000 1.000 
 
 
 
             ----------------------------------------------------- 
               Initial Estimates of the Binormal ROC Parameters:  
             ----------------------------------------------------- 
 
                  a =   .7608 
                  b =  1.0627 
 
       
                Procedure Converges after   5 Iterations 
 
 
               ===================================================== 
                  Final Estimates of the Binormal ROC Parameters     
               ===================================================== 
 
 
 Binormal Parameters and Area Under the Estimated ROC : 
        a           =         .7411 
        b           =        1.4932 
        Area (Az)   =         .6600                            (A) 
        Area (Wilc) =         .6565 
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 Estimated Standard Errors and Correlation of these Values: 
        Std. Err. (a)  =      .3054 
        Std. Err. (b)  =      .3026 
        Corr(a,b)      =      .3054 
        Std. Err. (Az) =      .0593                            (B)   
        Std. Err.(Wilc)=      .0639 
 
 Symmetric 95% Confidence Intervals 
        For a :        (  .1425, 1.3396) 
        For b :        (  .9001, 2.0863)                       (C) 
 
 Asymmetric 95% Confidence Interval 
        For Az:        (  .5378,  .7672) 
 
 
 

Table 4: 

             Estimated Binormal ROC curve, with Lower and Upper 
        Bounds of the Asymmetric Point-wise 95% Confidence 
        Interval for True-Positive Fraction at a Variety 
        of False-Positive Fractions: 
 
 
            FPF      TPF        (Lower Bound, Upper Bound) 
 
            .005     .0009       (   0.0000  ,    .0500   ) 
            .010     .0031       (   0.0000  ,    .0797   ) 
            .020     .0100       (    .0002  ,    .1262   ) 
            .030     .0193       (    .0008  ,    .1648   ) 
            .040     .0305       (    .0019  ,    .1989   ) 
            .050     .0431       (    .0036  ,    .2299   ) 
            .060     .0569       (    .0060  ,    .2587   ) 
            .070     .0717       (    .0091  ,    .2857   ) 
            .080     .0873       (    .0131  ,    .3112   ) 
            .090     .1036       (    .0180  ,    .3355   ) 
            .100     .1204       (    .0236  ,    .3588   ) 
            .110     .1377       (    .0301  ,    .3812   ) 
            .120     .1554       (    .0374  ,    .4028   ) 
            .130     .1734       (    .0456  ,    .4237   ) 
            .140     .1916       (    .0544  ,    .4439   ) 
            .150     .2100       (    .0640  ,    .4636   ) 
            .200     .3031       (    .1216  ,    .5542   ) 
            .250     .3953       (    .1906  ,    .6347   ) 
            .300     .4835       (    .2658  ,    .7064   ) 
            .400     .6418       (    .4178  ,    .8249   ) 
            .500     .7707       (    .5567  ,    .9098   ) 
            .600     .8684       (    .6768  ,    .9624   ) 
            .700     .9362       (    .7792  ,    .9886   ) 
            .800     .9771       (    .8662  ,    .9981   ) 
            .900     .9960       (    .9398  ,    .9999   ) 
            .950     .9993       (    .9717  ,   1.0000   ) 
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Figure 11: 

 
 

 

Table 4 shows the ROCKIT output  of these CIs for tp (denoted by TPF) for a given 

sequence of fp  values (denoted by FPF). Figure 11 displays the smoothed ROC cure with 

the 95% CIs (L95, U95).  From Table 5 of the ROCKIT output one can construct Figure 12, 

where the sensitivity  tp  and specificity  tn  are represented as functions of the various 

cut-off points of waist circumference. If populations N  and S  had the same variances, 

then the waist circumference where the two curves intersected would be the optimal cut-off 

point. 
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Table 5: 

 
      Estimated Relationship between the Critical Test-Result Value 
      (which separates 'positive' results form 'negative' results) 
      and the Corresponding Operating Point on the Fitted Binormal 
      ROC Curve: 
 
 *********************************************************************** 
 
          Critical Test           (  FPF ,   TPF ) 
          Result Value 
 
               111.865            (  .103,   .125) 
               107.465            (  .159,   .227) 
               104.200            (  .215,   .331) 
               102.885            (  .243,   .382) 
               101.715            (  .252,   .399) 
               100.450            (  .291,   .468) 
                99.865            (  .301,   .485) 
                97.335            (  .331,   .535) 
                94.980            (  .372,   .600) 
                94.080            (  .382,   .615) 
                91.820            (  .414,   .662) 
                91.435            (  .425,   .677) 
                90.800            (  .437,   .692) 
                87.765            (  .527,   .800) 
                87.365            (  .538,   .812) 
                83.950            (  .585,   .856) 
                83.200            (  .597,   .866) 
                80.370            (  .648,   .905) 
                75.715            (  .791,   .975) 
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Figure 11: 

True negatives (tn) and true positives (tp) vs waist circumference 
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 If one assumes that the Age is related to the Waist Circumference, then the ROC 

curve can be adjusted for it.  Figure 13 shows the STATISTICA output of a linear 

regression of each of NX  and SX  on Z  (Age).  It would seem that a normal person 

(ROC=2) has practically no linear relationship with the age variable  054.02 r , while the 

high blood pressure group (ROC=1) shows some relationship  186.02 r . Table 6 shows 

the results of the adjustment using the indirect method.  The intercept and regression 

coefficient for the group with high blood pressure and the normal group, as well as the 

standard error of estimation of the regression analysis serve as the input for an EXCEL 

worksheet  “Calculate  a  and xlsxb. ”  which can then be used to calculate the adjusted 

mean, and a  and b . The AUC is then calculated from a  and b , while the optimal cut-off 

point is determined using (23). The calculations are done at Age 30, the mean Ages of the 

two samples (44.52 and 41.48), and also at 50. It is clear that the AUCs remain reasonably 
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constant for the mean Age and at 50, but that they are considerably smaller for 30-year 

olds. Therefore, the optimal cut-off point is also considerably smaller (73.2).  

 

Figure 13: 

NaF glucose cut off for ROC=1
Summary Statistics; DV: Waist Av (SABPA 2008 FINAL _ 2010 - 28 Oktober 2010.sta)
Include condition: gender=1

Statistic Value
Multiple R
Multiple R²
Adjusted R²
F(1,29)
p
Std.Err. of Estimate

0.431769082
0.18642454

0.158370214
6.64512628

0.0152903683
12.6509464  

NaF glucose cut off for ROC=1
Regression Summary for Dependent Variable: Waist Av (SABPA 2008 FINAL _ 2010 - 28 O
R= .43176908 R²= .18642454 Adjusted R²= .15837021
F(1,29)=6.6451 p<.01529 Std.Error of estimate: 12.651
Include condition: gender=1

N=31
b* Std.Err.

of b*
b Std.Err.

of b
t(29) p-value

Intercept
AGE

61.6716 14.4216 4.27631 0.00018
0.43176 0.16749 0.8246 0.3199 2.57781 0.01529  

NaF glucose cut off for ROC=1
Normal Probability Plot of Residuals
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NaF glucose cut off for ROC=2
Summary Statistics; DV: Waist Av (SABPA 2008 FINAL _ 2010 - 28 Oktober 
Include condition: gender=1

Statistic Value
Multiple R
Multiple R²
Adjusted R²
F(1,48)
p
Std.Err. of Estimate

0.23243914
0.054027957
0.034320206

2.7414572
0.10429987
16.986242  

NaF glucose cut off for ROC=2
Regression Summary for Dependent Variable: Waist Av (SABPA 2008 FINAL _ 2010 - 28 Oktober 2
R= .23243915 R²= .05402796 Adjusted R²= .03432021
F(1,48)=2.7415 p<.10430 Std.Error of estimate: 16.986
Include condition: gender=1

N=50
b* Std.Err.

of b*
b Std.Err.

of b
t(48) p-value

Intercept
AGE

71.6035611.637986.1525780.000000
0.2324390.140384 0.45454 0.27453 1.6557350.104300  

 

 

Finally, the means and standard deviations of the groups without any adjustments are 

used to determine the AUC and the optimal cut-off. The AUC of 0.64 at Age 50 does not 

differ very much from the AUC at the mean age (0.646), or the ROCKIT program’s value 

(0.66), and the Mann-Whitney value (0.656). In practice, one would be able to calculate 

(without the availability of ROCKIT or SPSS) the means and standard deviations of the two 

samples if one were to assume normality of the data. 
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Table 6: 

Age 
Marker, 
group Gender  Intercept

Regres‐
sion 
coeffi‐
cient (b)

SE of 
estimate Variance

r‐
square  Age mean a b AUC

Optimum 
Threshold 

  Glucose, High  male  61.67 0.825 12.65 160.0 0.186  30 86.42 0.092 1.343 0.522 73.2 
30  Glucose, Low  male  71.6 0.455 16.99 288.7 0.054  30 85.25     
                  
44.52   Glucose, High  male  61.67 0.825 12.65 160.0 0.186  44.52 98.40 0.627 1.343 0.646 88.6 
  Glucose, Low  male  71.6 0.455 16.99 288.7 0.054  41.48 90.47     
                  
41.48  Glucose, High  male  61.67 0.825 12.65 160.0 0.186  50 102.92 0.677 1.343 0.657 93.2 
  Glucose, Low  male  71.6 0.455 16.99 288.7 0.054  50 94.35     
                  
50  Glucose, High  male    13.79 190.2  all 98.38 0.574 1.254 0.640 89.0 
  Glucose, Low  male      17.29 298.9   all 90.46        
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