
Introduction to GAP
The 7th Biennial International Group Theory Conference
(7BIGTC2023) at North-West University, South Africa

C. S. Anabanti

8–10 August, 2023

AGENDA

▶ Day 1: August 8, 2023 (Tuesday)
▶ 14:00–14:15: Pre-attendance GAP workshop check:

installation, starting, how to save your work and load files.
▶ 14:15–14:45: Introduction to GAP (Part I)
▶ 14:45–15:00: Exercise session I

▶ Day 2: August 9, 2023 (Wednesday)
▶ 14:00–14:40: Introduction to GAP (Part II)
▶ 14:40–15:00: Exercise session II

▶ Day 3: August 10, 2023 (Thursday)
▶ 08:00–09:00: Introduction to GAP (Part III)
▶ 09:00–09:25: Exercise session III
▶ 09:25–09:55: Project activities
▶ 09:55–10:00: Concluding remarks

Introduction to GAP
GAP: Installation, starting, how to save your work and load files
GAP as a fancy calculator
Functions in GAP: List, Groups, Help function et-cetera
Possible error messages and how to fix them
Exercise I
Small Group Library in GAP
Testing whether two groups are isomorphic
Cayley’s theorem and rewriting a group as a permutation group
Finitely presented (f.p) groups in GAP
Other algebraic systems
Exercise II
Regression tests in GAP
Defining functions in GAP
Class Exercise
Exercise III
Project activities
Concluding remarks

GAP: Installation, starting, how
to save your work and load files

14:00 – 14:15 on August 8, 2023

▶ Installing GAP: Windows, MAC and Linux users
▶ Starting and leaving GAP
▶ How to create a file that will contain your GAP outputs
▶ How to load a GAP source code from a file
▶ Some of the things GAP helped me do!

Installing GAP: Windows, MAC and Linux users

▶ For Windows users: An easy way would be to download
gap-4.12.2-x86_64.exe file (578MB) which can downloaded
from https://www.gap-system.org/Releases/4.12.2.html.

▶ For MAC users: A good solution for Mac would be Gap.app
(see the link at
https://www.gap-system.org/Download/alternatives.html)
which is precompiled for macOS.

▶ For Linux users: Downloading tar.gz or zip archive from
https://www.gap-system.org/Releases/4.12.2.html may work,
if you have C compiler and some other tools preinstalled (if
not, and there is at least some internet connection, it may still
be helpful to download GAP tar.gz or zip archive to reduce
downloads).

The latest version of GAP is Version 4.12.2, and it was released in
December 2022. First-time GAP users may install this version.

https://github.com/gap-system/gap/releases/download/v4.12.2/gap-4.12.2-x86_64.exe
https://www.gap-system.org/Releases/4.12.2.html
https://www.gap-system.org/Download/alternatives.html
https://www.gap-system.org/Releases/4.12.2.html

Starting and Leaving GAP
▶ You can start GAP by typing “gap" at the command

prompt/terminal of your operating system followed by the
Return/Enter key. Windows users can click on the GAP-v4.12.2
App installed on their computer to start GAP straightaway.

▶ We usually close the GAP prompt/terminal by typing “quit;" or
“Ctrl-D". You can also achieve the same result by closing the
terminal the usual way you close a window/tab of a browser.

Note: To execute any GAP command, you need to press the return/enter
key after inserting the command. Below is what will be displayed on your
prompt/terminal when you start GAP.

 ┌───────┐ GAP 4.12.2 built on 2022-12-19 10:30:03+0000
 │ GAP │ https://www.gap-system.org
 └───────┘ Architecture: x86_64-pc-cygwin-default64-kv8
 Configuration: gmp 6.2.1, GASMAN, readline
 Loading the library and packages ...
 Packages: AClib 1.3.2, Alnuth 3.2.1, AtlasRep 2.1.6, AutPGrp 1.11, Browse
1.8.19, CaratInterface 2.3.4,
 CRISP 1.4.6, Cryst 4.1.25, CrystCat 1.1.10, CTblLib 1.3.4,
curlInterface 2.3.1, FactInt 1.6.3, FGA 1.4.0,
 Forms 1.2.9, GAPDoc 1.6.6, genss 1.6.8, IO 4.8.0, IRREDSOL 1.4.4,
LAGUNA 3.9.5, orb 4.9.0,
 Polenta 1.3.10, Polycyclic 2.16, PrimGrp 3.4.3, RadiRoot 2.9, recog
1.4.2, ResClasses 4.7.3,
 SmallGrp 1.5.1, Sophus 1.27, SpinSym 1.5.2, TomLib 1.2.9, TransGrp
3.6.3, utils 0.81
 Try '??help' for help. See also '?copyright', '?cite' and '?authors'
gap>

How to create a file that will contain your GAP outputs

Suppose you want to look at what you would do today in GAP at
some point in the future, you may consider saving your GAP
outputs to a new file. You can use the command:

LogTo(“August.g");

to tell GAP to start saving your work to the new file named
“August.g". When you want to stop saving to that file, type the
command:

LogTo();

to tell GAP to stop saving in the existing file named August.g.

Warning! All the GAP outputs before typing ‘LogTo(“August.g");’
and after typing ‘LogTo();’ will not be saved.

Some remarks
1. To log into a file, you need to determine a filename. So you may
choose, for example, today’s date as your filename for ease of
remembrance. You type the command “LogTo(“8August2023.g");" for
GAP to create a file called 8August2023.g in your home directory. From
then henceforth, anything you do will be saved in the file
“8August2023.g".

2. To log out of a file, you simply type “LogTo();" in the GAP terminal,
and GAP will automatically log you out of the file. After you have been
logged out of a file in GAP, you can either create a new filename for
saving your work after the logout or continue on the terminal without
saving your work at all.

3. Suppose you are already logged into the file “8August2023.g", and you
remember this after some computations. You may try logging in again to
check. To do so, you type “LogTo(“8August2023.g");", and GAP will
display “Already logging to 8August2023.g" as the output...that shows
that you are logged in already! Alternatively, you may type LogTo and
then click the down arrow key once to see the last LogTo option you used.
Note that if you log out of a file and login again with the same
filename, then you will overwrite the initial file.

How to load source code from a file
Suppose you have a file called “Pretoria.g" which contains some
GAP codes which you want to use in your GAP computations.
Instead of typing all the GAP codes one after the other, you can
just load this file into GAP using the Read command, as follows:

Read("Pretoria.g");

Note that after you have called the above GAP Read code, GAP
will automatically see everything in the file “Pretoria.g" as if you
have typed all of them into the GAP prompt.

Exercise
We gave you a file called BIGTC2023.g. We want you to do the following.
1. Save BIGTC2023.g in a folder where your installed GAP can see it.
2. Start GAP and do (a) to (c) given below.
(a) Create a file called “PreBIGTC.g".
(b) Read the file “BIGTC2023.g" given to you.
(c) Log out of your PreBIGTC.g file.

Some of the things GAP helped me do!
▶ Anabanti CS, Hammer S and Okoli NC: An infinitude of

counterexamples to Herzog ’s conjecture on involutions in simple
groups. Communications in Algebra 49(4)(2021), 1415–1421.

▶ Anabanti CS: On the three questions of Bertram on locally maximal
sum-free sets. Quaestiones Mathematicae 44(3)(2021), 301–305.

▶ Anabanti CS: A question of Malinowska on sizes of finite nonabelian
simple groups in relation to involution sizes. C. R. Math. Acad. Sci.
Paris 358(11-12)(2020), 1135–1138.

▶ Anabanti CS: A counterexample to Zarrin’s conjecture on sizes of
finite nonabelian simple groups in relation to involution sizes.
Archiv der Mathematik 112(3)(2019), 225–226.

▶ Anabanti CS: Three questions of Bertram on locally maximal
sum-free sets. Applicable Algebra in Engineering, Communication
and Computing 30(2)(2019), 127–134.

▶ Anabanti CS and Hart SB: On a conjecture of Street and
Whitehead on locally maximal product-free sets. Australasian
Journal of Combinatorics 63(3)(2015), 385–398.

Introduction to GAP (Part I)
14:15 – 14:45 on August 8, 2023

Basic operations in GAP

gap> 2+3;
5
gap> 2-3;
-1
gap> 2*3;
6
gap> 2/3;
2/3
gap> Float(2/3);
0.666667
gap> Rat(0.25);
1/4
gap> 2*(3-5+7);
10
gap> 5 mod 3;
2

Functions in GAP
▶ A program written in the GAP language is called a function.
▶ Functions are special GAP objects. Most of them behave like

mathematical functions. They are applied to objects and will
return a new object depending on the input.

▶ Example: The function ‘Factorial’ returns the factorial of an
integer; see below for illustrations.

gap> Factorial(4);
24
gap> Factorial(6);
720

gap> Binomial(5,2);
10
gap> Binomial(5,3);
10

The Help function in GAP
What I term the most important function in GAP is the help
function. To ask GAP how to use the function ‘dihedral’, simply
type “?Dihedral" or “?DIHEDRAL" or “?dihedral" or “?dihed" and
click the Enter key. You must not spell it out in full...you can also
use the first few letters such as “?dih", “?dihe", “?dihed" et-cetera.
One take home here is that we need: ?WhatYouNeedHelpAbout.

gap> ?Dihedral
Help: several entries match this topic - type ?2
to get match [2]
[1] Reference: DihedralGroup
[2] CTblLib: dihedral groups!character table
[3] LAGUNA: DihedralDepth
[4] polycyclic: DihedralPcpGroup

Suppose we want to know more about dihedral groups in GAP, we
can then type “?1" and click the enter button.

Another way of asking for help in GAP

There is another way of calling help in GAP; other than the
“?WhatYouNeedHelpAbout" discussed earlier. To ask GAP how to
use the function ‘Dihedral’, you may use any of
“HELP(“Dihedral");", “HELP(“dih");", “HELP(“dihe");",
“HELP(“dihed");", “HELP(“dihedral");", “HELP(“DIHEDRAL");"
et-cetera and click the Enter key. An example is given below.

gap> HELP("Dihedral");

You can also use any of the options below.

gap> HELP("DIHEDRAL");

gap> HELP("dihedral");

gap> HELP("dihed");

On some functions in GAP: List in GAP (1)
We can determine the element in a certain position in a list.

gap> B:=[2,11,3,8,1,10,20,4,22];
[2, 11, 3, 8, 1, 10, 20, 4, 22]
gap> B[2];
11
gap> B[4];
8

We can arrange a list of rational numbers sequentially.

gap> Sort(B);
gap> B;
[1, 2, 3, 4, 8, 10, 11, 20, 22]
gap> B[2];
2
gap> B[4];
4

On some functions in GAP: List in GAP (2)

gap> L:=[1,2,3,4,5];;
gap> Add(L,6);
gap> L;
[1, 2, 3, 4, 5, 6]
gap> Remove(L,2);
2
gap> L;
[1, 3, 4, 5, 6]
gap> L[2]=L[4];
false
gap> M:=[1,2,2,2,5,6];
[1, 2, 2, 2, 5, 6]
gap> M[2]=M[4];
true
gap> Set(M);
[1, 2, 5, 6]

On some functions in GAP: List in GAP (3)

“Difference" and “SubtractSet" are not the same.

gap> L:=[1,3,4,5,6];;
gap> M:=[1,2,3,4,5];;
gap> Difference(L,M);
[6]
gap> L;
[1, 3, 4, 5, 6]

gap> L:=[1,3,4,5,6];;
gap> M:=[1,2,3,4,5];;
gap> SubtractSet(L,M);
gap> L;
[6]

On some functions in GAP: List in GAP (4)
The functions “Union" and “UniteSet" are not the same.

gap> A:=[1,2,3,4,5];;
gap> B:=[4,5,9,10];;
gap> Union(A,B);
[1, 2, 3, 4, 5, 9, 10]
gap> A;
[1, 2, 3, 4, 5]
gap> B;
[4, 5, 9, 10]

gap> A:=[1,2,3,4,5];;
gap> B:=[4,5,9,10];;
gap> UniteSet(A,B);
gap> A;
[1, 2, 3, 4, 5, 9, 10]
gap> B;
[4, 5, 9, 10]

On some functions in GAP: List in GAP (5)
In GAP, every set is a list but not every list is a set.

gap> A:=[1,2,3,4,4,5];;
gap> IsSet(A);
false
gap> IsList(A);
true

gap> B:=[1,2,3,4,5,6];;
gap> IsSet(B);
true
gap> IsList(B);
true

You can convert a list of integers to a set.

gap> C:=Set(A);;
gap> A;
[1, 2, 3, 4, 4, 5]
gap> C;
[1, 2, 3, 4, 5]

On some functions in GAP: List in GAP (6)
We can determine the position of an element in a set

gap> B:=[1,2,3,4,8,10,11,20,22];
[1, 2, 3, 4, 8, 10, 11, 20, 22]

gap> 5 in B;
false
gap> 10 in B;
true

gap> Size(B);
9

gap> PositionCanonical(B,8);
5
gap> PositionCanonical(B,11);
7

On some functions in GAP: List in GAP (7)

gap> A:=[1,2,3,4,5];; B:=[4,5,6,7];;
gap> A-B;
[-3, -3, -3, -3, 5]
gap> B-A;
[3, 3, 3, 3, -5]
gap> A+B;
[5, 7, 9, 11, 5]
gap> 2+A;
[3, 4, 5, 6, 7]
gap> B-4;
[0, 1, 2, 3]
gap> 5*A;
[5, 10, 15, 20, 25]
gap> B/5;
[4/5, 1, 6/5, 7/5]

On some functions in GAP: List in GAP (8)

gap> W:=[1..20];
[1 .. 20]
gap> V:=[19..10000];
[19 .. 10000]
gap> Size(W);
20
gap> Size(V);
9982
gap> 1 in W;
true
gap> 20 in W;
true
gap> 25 in W;
false
gap> 25 in V;
true

More examples of functions in GAP
gap> A:=[1,2,3,4,5];
[1, 2, 3, 4, 5]
gap> Sum(A);
15
gap> Product(A);
120

gap> B:=[[1,2],[3,4]];
[[1, 2], [3, 4]]
gap> Determinant(B);
-2
gap> Inverse(B);
[[-2, 1], [3/2, -1/2]]
gap> Trace(B);
5
gap> Rank(B);
2

Possible error messages and how to fix them
1. What is wrong in the definition of A5 below? How can we correct it?

gap> a_5:=Alternatinggroup(5);
Error, Variable: ’Alternatinggroup’ must have a value
not in any function at *stdin*:57

2. What is wrong in the definition of the matrix BB below? Correct it!

gap> BB=[[1,2],[3,4]];
Error, Variable: ’BB’ must have a value
not in any function at *stdin*:70

3. What gave the error message below? What is the right request?

gap> CC:=[1,2,3,4,5];;
gap> Add(CC,6);
gap> cc;
Error, Variable: ’cc’ must have a value
not in any function at *stdin*:102

Checking for error messages in GAP
4. A student in a GAP class wants to make a list of integers from 2 up to
2000. See his GAP trials below. What should he write?
gap> D:=[2,...,2000];
Syntax error: expression expected
D:=[2,...,2000];
^^^
gap> D:=[2,..,2000];
Syntax error: expression expected
D:=[2,..,2000];
^^
gap> D:=[2...2000];
Syntax error: Only two dots in a range
D:=[2...2000];
^^^

5. Amin wants to list all prime numbers that lie from 4050 to 4801.
Which of (A) to (C) below will do the task? What should be written?
(A) gap> Filtered([4050..4800], IsPrime);
(B) gap> Filtered([4050..4801], Isprime);
(C) gap> Filtered([4051..4801], Isprime);

Exercise session I
14:45 – 15:00 on August 8, 2023

Exercise I
Open a new file in GAP called “Exercise1.g". In this new file, attempt the
questions below.
1. Obtain the average of all the integers from 1 to 1000, and display your
result in decimal.
2. Find the determinant, inverse and rank of the matrix A given below:

A =

(1 2 3
1 2 0
1 0 0

)
.

3. Let P = {1, 2, . . . , 10002} and Q = { 1
7 , 2

7 , . . . , 10002
7 }. What is |P ∩ Q|?

4. How many prime numbers are there from 2 up to 999999?

5. Evaluate
10∑

k=2

(
13
k

)
.

6. Assume that 10, 000m2 = 1 hectare of land. Write a program that asks the
user for the length and width (in meters) of his/her family land and gives the
area of the land in hectares.
7. Write a program that ask the user for a positive integer n > 1 and returns
both the sum of the first n positive integers and the average of the first n
positive integers.

Introduction to GAP (Part II)
14:00 – 14:40 on August 9, 2023

On Groups in GAP
gap> G:=CyclicGroup(5);
<pc group of size 5 with 1 generators>
gap> Size(G);
5
gap> AllSubgroups(G);
[Group([<identity> of ...]), <pc group of size 5
with 1 generators>]
gap> NormalSubgroups(G);
[<pc group of size 5 with 1 generators>, Group([])]
gap> IsAbelian(G);
true
gap> IsCyclic(G);
true
gap> IsSimple(G);
true
gap> ConjugacyClasses(G);
[<identity> of ...^G, f1^G, f1^2^G, f1^3^G, f1^4^G]
gap> Size(Center(G))=Size(ConjugacyClasses(G));
true

More on subgroups of a group
gap> G:=DihedralGroup(10);; gens:=GeneratorsOfGroup(G);
[f1, f2]
gap> allsub:=AllSubgroups(G);; Size(allsub);
8

gap> G=allsub[8];
true
gap> G=allsub[1];
false

gap> H1:=Subgroup(G,[gens[1]]);
Group([f1])
gap> Size(H1);
2
gap> H2:=Subgroup(G,[gens[2]]);
Group([f2])
gap> Size(H2);
5

Normal subgroups and Factor/Quotient groups
gap> G:=DihedralGroup(10);; gens:=GeneratorsOfGroup(G);
[f1, f2]

gap> ns :=NormalSubgroups(G);;
gap> Size(ns);
3

gap> List(ns [2]);
[< identity > of ..., f2, f 2

2 , f 3
2 , f 4

2]

gap> Size(ns [2]);
5

gap> Index(G,ns [2]);
2

gap> facgp:=FactorGroup(G,ns [2]);; Size(facgp);
2

Small group library
GAP stores each group of any order uniquely in a library.

gap> A:=AllSmallGroups(6);
[<pc group of size 6 with 2 generators>,
<pc group of size 6 with 2 generators>]
gap> StructureDescription(A[1]);
"S3"
gap> StructureDescription(A[2]);
"C6"
gap> B:=AllSmallGroups(6,IsAbelian,true);
[<pc group of size 6 with 2 generators>]
gap> StructureDescription(B[1]);
"C6"
gap> AllSmallGroups(6,IsAbelian,true,IsCyclic,false);
[]
gap> Size(AllSmallGroups(8,IsCyclic,false));
4

More insight on Small group library

gap> G1:=SmallGroup(6,1);
<pc group of size 6 with 2 generators>
gap> StructureDescription(G1);
"S3"
gap> G2:=DihedralGroup(8);
<pc group of size 8 with 3 generators>
gap> StructureDescription(G2);
"D8"
gap> IdGroup(G2);
[8, 3]
gap> G3:=Group((1,2,3),(1,2));
Group([(1,2,3), (1,2)])
gap> StructureDescription(G3);
"S3"
gap> IdGroup(G3);
[6, 1]

Testing whether two groups are isomorphic
Suppose we have two finite groups G1 and G2, and want to check
whether G1 is isomorphic to G2. In GAP, we can do this in at least
two ways: the first way is to check whether the GAP IDs of the
two groups are the same while the second way is to use the
function “IsomorphismGroups(G1, G2);".

gap> G1:=CyclicGroup(2);;
gap> G2:=DirectProduct(G1,G1);;
gap> G3:=SymmetricGroup(2);;
gap> IsomorphismGroups(G1,G2);
fail
gap> IsomorphismGroups(G1,G3);
[f1] -> [(1,2)]
gap> IsomorphismGroups(G2,G3);
fail
gap> [IdGroup(G1),IdGroup(G2),IdGroup(G3)];
[[2, 1], [4, 2], [2, 1]]

Obeying Cayley’s theorem in GAP
Cayley’s theorem states that every group G is isomorphic to a
subgroup of the symmetric group acting on G . We shall use an
example below to show how GAP obeys Cayley’s theorem.

gap> G:=CyclicGroup(11);;

GAP re-writes the group G as a subgroup H of S11.

gap> H:=Image(IsomorphismPermGroup(G)); #G re-written.
Group([(1,2,3,4,5,6,7,8,9,10,11)])
gap> A:=SymmetricGroup(11);; #This is S11.

Confirming Cayley’s theorem on A and H.

gap> IsSubgroup(A,H);
true

Finally, we confirm that G is isomorphic to H.

gap> [Size(H),IsCyclic(H)]; #Can also use IdGroup(H).
[11, true]

Rewriting a group as a permutation group: Thanks to Cayley’s theorem!

Here, we shall rewrite each group of size 8 as a permutation group.

gap> DihedralGroup(IsPermGroup,8);
Group([(1,2,3,4), (2,4)])

gap> QuaternionGroup(IsPermGroup,8);
Group([(1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8)])

gap> CyclicGroup(IsPermGroup,8);
Group([(1,2,3,4,5,6,7,8)])

Exercise: Define C2 × C4 and C2 × C2 × C2 as permutation groups
using GAP

Observing the number of generators in some cyclic groups in GAP

gap> G7:=CyclicGroup(3);
<pc group of size 3 with 1 generators>
gap> List(G7);
[<identity> of ..., f1, f1^2]
gap> G8:=CyclicGroup(4);
<pc group of size 4 with 2 generators>
gap> List(G8);
[<identity> of ..., f2, f1, f1*f2]
gap> G9:=CyclicGroup(5);
<pc group of size 5 with 1 generators>
gap> G10:=CyclicGroup(6);
<pc group of size 6 with 2 generators>
gap> G11:=CyclicGroup(8);
<pc group of size 8 with 3 generators>

Observing the number of generators in some dihedral groups in GAP

gap> G1:=DihedralGroup(6);
<pc group of size 6 with 2 generators>
gap> List(G1);
[<identity> of ..., f2, f2^2, f1, f1*f2, f1*f2^2]
gap> G2:=DihedralGroup(8);
<pc group of size 8 with 3 generators>
gap> G3:=DihedralGroup(10);
<pc group of size 10 with 2 generators>
gap> G4:=DihedralGroup(12);
<pc group of size 12 with 3 generators>
gap> G5:=DihedralGroup(14);
<pc group of size 14 with 2 generators>
gap> G6:=DihedralGroup(16);
<pc group of size 16 with 4 generators>

Constructing a group in GAP (1)
▶ We could construct any group we know its presentation.
▶ From the fundamental theorem of presentation of groups, we

know that finite groups have finite presentations. So we can
easily construct finite groups in GAP.

▶ Some examples are displayed below for cyclic and dihedral
groups of size 40.

gap> F:=FreeGroup("x"); #Can write F:=FreeGroup(1);
<free group on the generators [x]>
gap> x:=F.1;;
gap> G:=F/[x^40];;
gap> IsCyclic(G);
true
gap> IdGroup(G);
[40, 2]
gap> StructureDescription(G);
"C40"

Constructing a group in GAP (2)
Recall: D2n = ⟨x , y | xn = 1 = y2, (xy)2 = 1⟩ is the finite dihedral
group of order 2n.

We shall now construct the dihedral group of order 40.

gap> F:=FreeGroup("x","y");#Can write F:=FreeGroup(2);
<free group on the generators [x, y]>
gap> x:=F.1;; y:=F.2;;
gap> G:=F/[x^20,y^2,(x*y)^2];;

gap> IsDihedralGroup(G);
true
gap> Size(G);
40
gap> IdGroup(G);
[40, 6]
gap> StructureDescription(G);
"D40"

Defining a finitely presented group with its minimal number of generators

▶ As we have seen from previous slides, GAP does not always
give the description of a group it stores as a function in terms
of its minimal number of generators.

▶ To define a group with its minimal number of generators
(say k) in GAP, we construct such group as a quotient
of a free group of rank k.

▶ Another way we might obtain such without necessarily
defining a free group is to use the command
“SimplifiedFpGroup(Image(IsomorphismFpGroup(G)));" to
obtain the same group G in terms of a possible reduced
number of generators.

Description of the IsomorphismFpGroup function

IsomorphismFpGroup(G) function

▶ It returns an isomorphism from the given finite group G to a
finitely presented group isomorphic to G. The function first
chooses a set of generators of G and then computes a
presentation in terms of these generators.

▶ Example: An illustration is given with S5 below.
gap> G:=Group((1,2),(2,3,4,5));;#This is S_5.
gap> iso:= IsomorphismFpGroup(G);
[(4,5), (1,2,3,4,5), (1,3,2,4,5)] -> [F1, F2, F3]
gap> fp:= Image(iso);
<fp group on the generators [F1, F2, F3]>

Description of the SimpliedFpGroup function

SimplifiedFpGroup(G) function

▶ It applies Tietze transformations to a copy of the presentation
of the given finitely presented group G in order to reduce it
with respect to the number of generators, the number of
relators, and the relator lengths.

▶ SimplifiedFpGroup returns a group isomorphic to the given
one with a presentation which has been tried to simplify via
Tietze transformations.

Example yielding the minimal number of generators

gap> G:=CyclicGroup(12);
<pc group of size 12 with 3 generators>
gap> I:=IsomorphismFpGroup(G);
[f1, f2, f3] -> [F1, F2, F3]
gap> J:=Image(I);
<fp group of size 12 on the generators [F1, F2, F3]>
gap> K:=SimplifiedFpGroup(J);
<fp group on the generators [F1]>
gap> Size(K);
12
gap> IsCyclic(K);
true
gap> GeneratorsOfGroup(K);
[F1]
gap> RelatorsOfFpGroup(K);
[F1^12]

Example yielding the minimal number of generators

gap> G:=DihedralGroup(12);
<pc group of size 12 with 3 generators>
gap> I:=IsomorphismFpGroup(G);
[f1, f2, f3] -> [F1, F2, F3]
gap> J:=Image(I);
<fp group of size 12 on the generators [F1, F2, F3]>
gap> K:=SimplifiedFpGroup(J);
<fp group on the generators [F1, F2]>
gap> Size(K);
12
gap> IsDihedralGroup(K);
true
gap> GeneratorsOfGroup(K);
[F1, F2]
gap> RelatorsOfFpGroup(K);
[F1^2, (F1*F2)^2, F2^6]

What is GAP doing to obtain such minimal number of
generators?

gap> G:=DihedralGroup(12);
<pc group of size 12 with 3 generators>
gap> H:=Image(IsomorphismFpGroup(G));
<fp group of size 12 on the generators [F1, F2, F3]>
gap> IsDihedralGroup(H);
true

What is actually happening in GAP?

gap> IsomorphismSimplifiedFpGroup(H);
[F1, F2, F3] -> [F1, F2, F2^2]

To simply the above operation well, we get:

gap> S:=SimplifiedFpGroup(H);
<fp group on the generators [F1, F2]>
gap> IsDihedralGroup(S);
true

We can define more groups in GAP

gap> G1:=Group((1,2),(2,3,4,5));
Group([(1,2), (2,3,4,5)])
gap> Size(G1);
120
gap> IdGroup(G1);
[120, 34]
gap> IsSymmetricGroup(G1);
true
gap> G2:=Group((1,2,3),(2,3,4));
Group([(1,2,3), (2,3,4)])
gap> Size(G2);
12
gap> [IsSymmetricGroup(G2),IsAlternatingGroup(G2)];
[false, true]
gap> IdGroup(G2);
[12, 3]

A little about rings
There are at least two ways of defining Z5 in GAP.

gap> R1:=Integers mod 5;; R2:=GF(5);; R1=R2;
true
gap> Elements(R1);
[0 ∗ Z(5), Z(5)0, Z(5), Z(5)2, Z(5)3]

To see what integer Z(5) represents (mod 5) type:
gap> Int(Z(5));
2

We now create the indeterminate over the ring R1 as follows:
gap> x:= X(R1, "x");
x

We can now set up a polynomial ring:
gap> P1:=PolynomialRing(R1);
GF(5)[x]

gap> IsIrreducible(x2 − 4);
false
gap> Factors(x2 − 4);
[x + Z(5), x + Z(5)3]

A little about vector spaces
gap> intg:=Integers;; Size(intg);
infinity
gap> f25:= GF(25);; Size(f25);
25

gap> F:= Rationals;;
gap> V:= VectorSpace(F, [[1, 1, 1], [0, 1, 1]]);;
gap> [2, 3, 2] in V;
false
gap> [1, 2, 2] in V;
true
gap> B:=Basis(V);;
gap> Size(Basis(V));
2
gap> B[1];
[1, 1, 1]
gap> B[2];
[0, 1, 1]

Exercise session II
14.40 – 15:00 on August 9, 2023

Exercise II

1. Give the GAP ID and description of the following groups:
(i) G1 = ⟨x , y | x6 = 1 = y 2, xy = yx−1⟩;
(ii) G2 = ⟨x , y | x6 = 1, x3 = y 2, xy = yx−1⟩;
(iii) G3 = ⟨x , y | x3 = 1 = y 4, xyx−1y−1 = 1⟩.

2. Identify the finite group whose GAP ID is [32, 51]. Then write the group as
a permutation group.

3. Give a presentation of the group whose GAP ID is [32, 16].

4. Find the size of the minimal generating set, GAP ID and Structure
description of the following groups:

(i) G1 = ⟨(1, 2, 3), (4, 5, 6), (5, 6, 7), (8, 9, 10)⟩;

(ii) G2 = ⟨(1, 2, 3), (1, 2), (4, 5, 6), (5, 6, 7), (8, 9, 10)⟩.

5. What is the ratio of the number of abelian groups of order 100 to the
number of nonabelian groups of order 100?

Introduction to GAP (Part III)
08:00 – 09:00 on August 10, 2023

Regression tests

The regression tests we do in GAP include the following.
▶ if bool-expr1 then

statements1
elif bool-expr2 then
statements2
else
statements3
fi;

▶ for simple-var in list-expr do
statements
od;

▶ while bool-expr do
statements
od;

▶ repeat statements until bool-expr;

1. Obtain a list of all the odd numbers from 1 up to 1000

Method I (Writing the code from scratch)
L:=[1..1000];; Od:=[];;
for i in L do

if i mod 2=1 then
Add(Od,i);

fi;
od;
Print(Od); #This will give the required list.

Method IIa (Using an inbuilt function in GAP)
L:=[1..1000];; Od:=[];;
for i in L do

if IsOddInt(i) then
Add(Od,i);

fi;
od;
Print(Od); #This will give the required list.

Method IIb (Using an inbuilt function in GAP)
Filtered([1..1000], IsOddInt);

1. Obtain a list of all the odd numbers from 1 up to 1000
Method I (Writing the code from scratch)
L:=[1..1000];; Od:=[];;
for i in L do

if i mod 2=1 then
Add(Od,i);

fi;
od;
Print(Od); #This will give the required list.

Method IIa (Using an inbuilt function in GAP)
L:=[1..1000];; Od:=[];;
for i in L do

if IsOddInt(i) then
Add(Od,i);

fi;
od;
Print(Od); #This will give the required list.

Method IIb (Using an inbuilt function in GAP)
Filtered([1..1000], IsOddInt);

2. Write a program that will return a list of GAP IDs of all the nonabelian
groups of order 2p2 for any odd prime p the user chooses.

Ord:=function(p)
local GG, A, G;
GG:=AllSmallGroups(2*p^2,IsAbelian,false);
A:=[]; for G in GG do Add(A,IdGroup(G)); od;
return A; end;

gap> Ord(3);
[[18, 1], [18, 3], [18, 4]]
gap> Ord(5);
[[50, 1], [50, 3], [50, 4]]

Exercise
(a) Suggest another program for the above question.
(b) Make a conjecture on the number of nonabelian groups of order 2p2 for any
odd prime p. Does your conjecture also hold for all nonabelian groups of order
2pn, where n ≥ 3?

3. Write a program that takes as an input, scores S1, S2, S3, S4 and S5 gotten
by a Masters student in coursework and determines the student’s result as
Distinction, Merit, Pass or Fail. The student gets:
Distinction if the average score is at least 75%;
Merit if the average score is less than 75% but at least 65%;
Pass if the average score is less than 65% but at least 50%;
Fail if otherwise.

ResSol:=function(S1, S2, S3, S4, S5)
local Av;
Av:=Average([S1,S2,S3,S4,S5]);
if Av>=75 then Print("DISTINCTION");
elif Av>=65 then Print("MERIT");
elif Av>=50 then Print("PASS");
else Print("FAIL"); fi;
end;

3. Write a program that takes as an input, scores S1, S2, S3, S4 and S5 gotten
by a Masters student in coursework and determines the student’s result as
Distinction, Merit, Pass or Fail. The student gets:
Distinction if the average score is at least 75%;
Merit if the average score is less than 75% but at least 65%;
Pass if the average score is less than 65% but at least 50%;
Fail if otherwise.

ResSol:=function(S1, S2, S3, S4, S5)
local Av;
Av:=Average([S1,S2,S3,S4,S5]);
if Av>=75 then Print("DISTINCTION");
elif Av>=65 then Print("MERIT");
elif Av>=50 then Print("PASS");
else Print("FAIL"); fi;
end;

4. Define a function that will take in any finite group from the user and returns
all subgroups of index 3 if the group has such and returns “[]" if the group has
no subgroup of index 3.

Ind3:=function(G)
local HH,H,AA;
if (Size(G) mod 3)>0 then return [];
else HH:=AllSubgroups(G); AA:=[];
for H in HH do if Index(G,H)=3 then Add(AA,H); fi; od;
return AA; fi;
end;

gap> Ind3(SymmetricGroup(3));
[Group([(2,3)]), Group([(1,2)]), Group([(1,3)])]
gap> Ind3(CyclicGroup(8));
[]
gap> F:=FreeGroup(1);; x:=F.1;; G:=F/[x^24];; Ind3(G);
[Group([f1^3])]

4. Define a function that will take in any finite group from the user and returns
all subgroups of index 3 if the group has such and returns “[]" if the group has
no subgroup of index 3.

Ind3:=function(G)
local HH,H,AA;
if (Size(G) mod 3)>0 then return [];
else HH:=AllSubgroups(G); AA:=[];
for H in HH do if Index(G,H)=3 then Add(AA,H); fi; od;
return AA; fi;
end;

gap> Ind3(SymmetricGroup(3));
[Group([(2,3)]), Group([(1,2)]), Group([(1,3)])]
gap> Ind3(CyclicGroup(8));
[]
gap> F:=FreeGroup(1);; x:=F.1;; G:=F/[x^24];; Ind3(G);
[Group([f1^3])]

5. Two students (Student A and Student B) were asked to write a
program that will take as an input a finite group G and an element g of
G , and return the order of g . Below are their attempts.

Student A

OrdAGg:=function(G,g)
local n;
n:=1;
while (g^n=Identity(G))=false do n:= n+1; od;
return n; end;

Student B

OrdBGg:=function(G,g)
local n, a;
n:= 1; a:=g;
while (a=Identity(G))=false do n:= n+1; a:=a*g; od;
return n; end;

(a) Would any of the above two programs will yield a faster result when
|G | is large enough?
(b) Is there an easier way of answering this question without defining a
function in GAP?

Class Exercise

1. Define a function that will take inputs as two sets A and B and return the
cardinality of the union of A and B (Please do not use any function like Union,
UniteSet, UnionSet et-cetera).

2. Write a program that asks the user for any finite group G and a positive
integer k > 1 and returns both a list of all the elements of order k in G and the
number of elements of order k in G .

3. Define a function that will take inputs as integers a, b, c and prints “Your
descriminant is negative!" if b2 − 4ac < 0, but returns the value −b±

√
b2−4ac

2a if
b2 − 4ac ≥ 0.

4. Define a function that will take as an input a finite group G and return
whether or not the group is simple. [Please do not use the GAP command
“IsSimple(G)" in your solution.]

5. Write a program that reads an n digit number and returns the sum of the
digits of the number.

Class Exercise continues
6. Write a program that takes as an input a positive integer n, and
returns the ratio of the nonabelian groups of order n to the abelian
groups of order n. [Test your program for n = 1, 5, 6, 25 and 100.]

7. Write a program that takes as an input scores S1, S2, S3, S4 and S5
gotten by a Masters student in coursework and determines the student’s
result as Distinction, Merit, Pass or Fail under the condition given below.
Writing Avr for the average of the five scores, the students gets:
Distinction if Avr ≥ 75%, and Si ≥ 65% ∀i ∈ {1, 2, 3, 4, 5};
Merit if 65% ≤ Avr < 75%, and Si ≥ 50% ∀i ∈ {1, 2, 3, 4, 5};
Pass if 50% ≤ Avr < 65%, and Si ≥ 40% ∀i ∈ {1, 2, 3, 4, 5};
Fail if otherwise.

8. Write a program that will ask the user for his/her ATM pin. If the
user enters the ATM pin wrongly three times, it will type “You entered a
wrong pin three times, so we blocked your card. Please see customer
care". If the user enters the ATM pin correctly, it will print “Your ATM
pin is correct; so proceed.". [Hint: Use 1701 as your default ATM pin.
Also, use the function “InputFromUser" somewhere in your program.]

Exercise session III
09.00 – 09:25 on August 10, 2023

Exercise III
1. Write a program that takes as an input a finite group G, and returns
the number of conjugacy classes in G, the center of G and the derived
subgroup of G .

2. Write a program that takes as an input a prime number p and a
natural number n, and returns the elementary abelian group p-group of
size pn. [Do not use the elementary abelian group function.]

3. Write a program that takes as an input a finite group G, and returns a
presentation of G in the form [gen, rel], where gen is the set of generators
of the group G and rel is the set of relators of G.

4. Write a program that takes as an input two finite groups G and H,
and returns true if G is isomorphic to H and false if G and H are not
isomorphic.

5a. How many groups are there of order less than or equal to 1000?
b. How many nonabelian simple groups are there of order up to 1000?
c. How many simple groups of order less than or equal to 1000 are there?
d. How many nonabelian groups of order 1024 are there?

Exercise III continues
6a. Identify the groups given by the following presentations:
G1 = ⟨x , y , z : x3 = y2 = z2 = (xz)2 = (xy)3 = (yz)3 = 1⟩;
G2 = ⟨x , y , z : x3 = y2 = z2 = (xz)2 = (xy)3 = (yz)2 = 1⟩;
G3 = ⟨x , y , z : x3 = y2 = z2 = (xz)2 = (xy)2 = (yz)2 = 1⟩;
G4 = ⟨x , y , z : x3 = y3 = z3 = (xz)2 = (xy)2 = (yz)2 = 1⟩;
G5 = ⟨x , y , z : x3 = y3 = z2 = (xz)2 = (xy)2 = (yz)2 = 1⟩;
G6 = ⟨x , y , z : x4 = y3 = z2 = (xz)2 = (xy)2 = (yz)2 = 1⟩;
G7 = ⟨x , y , z : x5 = y3 = z2 = (xz)2 = (xy)2 = (yz)2 = 1⟩.
b. Give a presentation of each of the groups in 6a in terms of the
minimal number of generators, if not written already.
7. List finite groups S and G of the same size, such that S and G have
the same number of elements of order n for any n dividing |S|, but G is
not isomorphic to S. Obtain all such G and S for |G | = |S| ≤ 100.
8. Stefan has a large pile of socks that he wants his son to pair by colour
after washing. Write a program in GAP, that given a list of integers
representing the colour of each sock, determines how many pairs of socks
with matching colours there are. For instance, the list [1, 2, 3, 4, 4, 4, 5, 9]
will return 1 pair of socks, the list [3, 3, 1, 2, 3, 4, 1, 1, 3, 5, 5] will return 4
and [2, 3, 4, 5] will return 0.

Project activities
09:25–09:55 on August 10, 2023

Project: Attempt Conjecture 1 or 2 below, but not both
Project Activities: 30 minutes

1. Attempt the assigned conjecture for your group (20 minutes).
2. We would need two volunteers, one from each group, to tell us the steps

s/he took in tackling the conjecture and what s/he thinks about the
validity of the conjecture. (10 minutes: 5 minutes each).

Conjecture 1 (B. Curtin and G. R. Pourgholi)
Let G and H be finite groups of the same order with∑

g∈G

φ(|g |) =
∑
h∈H

φ(|h|).

Suppose that G is simple. Is H necessarily simple?
(Ref: Question 19.25 of the 19th issue (2018) of the Kourovka Notebook.)
Note. φ(n) is the number of positive integers up to n which are coprime to n.

Conjecture 2 (L. J. Taghvasani and M. Zarrin)
Let G be a finite nonabelian simple group. Then |G(p)| ̸= |G(q)| for all
distinct prime divisors p and q of |G |, where G(p) := {g ∈ G : ◦(g) = p}.
(Ref: Monatshefte für Mathematik 182(3) (2017), 731–736.)

Concluding remarks
09:55–10:00 on August 10, 2023

Concluding remarks

▶ Do not forget the help function in GAP.
▶ If you need further assistance, you can use any of the two platforms

below to ask your question (remember to send your attempt too!):

(a) Mathematics Stack Exchange
(https://math.stackexchange.com/tags/gap/info);

(b) Send an email to forum@gap-system.org.
You can also subscribe to the GAP Forum mailing list by signing up at
https://lists.uni-kl.de/gap/info/forum. This will help you to see
questions asked by others, as well as any answers and/or suggestions
given by various individuals. You can also answer questions asked by
others too!

Enjoy using GAP!

https://math.stackexchange.com/tags/gap/info
https://lists.uni-kl.de/gap/info/forum

	GAP: Installation, starting, how to save your work and load files
	GAP as a fancy calculator
	Functions in GAP: List, Groups, Help function et-cetera
	Possible error messages and how to fix them
	Exercise I
	Small Group Library in GAP
	Testing whether two groups are isomorphic
	Cayley's theorem and rewriting a group as a permutation group
	Finitely presented (f.p) groups in GAP
	Other algebraic systems
	Exercise II
	Regression tests in GAP
	Defining functions in GAP
	Class Exercise
	Exercise III
	Project activities
	Concluding remarks

