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Abstract Using phylogenetic and haplotype network anal-
yses of 2036 bp of mitochondrial DNA, we compare sam-
ples of the two hinged terrapin species Pelusios castanoides
and P. subniger from continental Africa, Madagascar and
the Seychelles to infer their biogeography. Owing to the
long independent history of Madagascar and the Seychelles,
the populations from those islands should be deeply diver-
gent from their African conspecifics. Seychellois popula-
tions of the two species are currently recognized as Critically
Endangered endemic subspecies. However, even though we
foundwithinP. subniger evidence for a cryptic species from the

Democratic Republic of the Congo, all other samples assigned
to this species were undifferentiated. This suggests that Mala-
gasy and Seychellois populations of P. subniger were intro-
duced by humans and that the Seychellois subspecies P. s.
parietalis is invalid. This has implications for current conser-
vation strategies for the Critically Endangered Seychellois pop-
ulations and suggests that measures should rather focus on
endemic species. The situation of P. castanoides could be
different. Samples from Madagascar and the Seychelles are
weakly, but consistently, differentiated from continental Afri-
can samples, and Malagasy and Seychellois samples are
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reciprocally monophyletic in maximum likelihood analyses.
However, due to a lack of samples from central and northern
Mozambique and Tanzania, we cannot exclude that identical
continental haplotypes exist there.

Keywords Reptilia . Testudines . Pelomedusidae .
Phylogeography . Africa . Madagascar . Seychelles

Introduction

Hinged terrapins (Pelusios Wagler 1830) are a species-rich
genus of side-necked turtles (Pleurodira: Pelomedusidae)
widely distributed in freshwater habitats of sub-Saharan
Africa, Madagascar and the Seychelles (Bour 1983; Ernst
et al. 2000). These terrapins are characterized by a movable
plastral forelobe, allowing the more or less complete closure
of the anterior shell opening (Ernst et al.2000). Among the
17 or 18 currently recognized species (Fritz and Havaš
2007; Fritz et al. 2011; van Dijk et al. 2011), Pelusios
castanoides Hewitt 1931 and P. subniger (Bonnaterre
1789) have the most disjunct distribution ranges (Fig. 1),
with populations occurring in continental East Africa,
Madagascar and the Seychelles (Bour 1983; Iverson 1992;
Ernst et al. 2000). In addition, records of introduced P.
subniger exist for the islands of Diego Garcia (Chagos
Archipelago), Grande Glorieuse and Mauritius (Bour
1983, 1984). Malagasy and Seychellois populations of P.
castanoides have been described as the distinct subspecies
P. c. kapika Bour 1978 and P. c. intergularis Bour 1983,
respectively. The Seychellois population of P. subniger has

also been described as a distinct subspecies (P. s. parietalis
Bour 1983), whereas Malagasy P. subniger are thought to be
taxonomically not distinct from their continental African
conspecifics (Bour 1978, 1983). Besides P. c. intergularis
and P. s. parietalis, a third, possibly extinct, Pelusios spe-
cies, P. seychellensis (Siebenrock 1906), has been recog-
nized for the Seychelles, which is known from only three
specimens collected in the late nineteenth century (Bour
1983, 1984; Bour and Gerlach 2008).

On Madagascar, P. castanoides is widespread throughout
the island, whereas P. subniger occurs only in a narrow strip
along the northeastern coast (Fig. 1). The two Seychellois
taxa P. c. intergularis and P. s. parietalis have highly re-
stricted ranges of less than 11 ha for each species, which
have decreased by more than 50% in recent years (Gerlach
and Canning 2001). These subspecies were the only two
reptiles of the Seychelles listed as Critically Endangered by
the International Union for Conservation of Nature (IUCN
2007) and are protected by law. For several years, conser-
vation measures have been implemented to protect the
remaining populations (Gerlach 2008a, b; Silva et al. 2010).

From a biogeographic point of view, it should be expected
that native terrapin populations in Madagascar and the Sey-
chelles are genetically clearly distinct. The vast majority of the
non-flying native terrestrial and freshwater faunas of Mada-
gascar and the Seychelles are deeply divergent from their most
closely related East African species owing to the long inde-
pendent history of those islands (Harmon et al. 2008; Yoder
and Nowak 2009; Daniels 2011; Rowson et al. 2011; Crottini
et al. 2012; Samonds et al. 2012). Yet, three recent molecular
investigations have suggested that the Malagasy and

Fig. 1 Distribution ranges (shaded; Bour 1983, 1984; Iverson 1992)
and sampling sites (coloured circles) for Pelusios castanoides and P.
subniger; described subspecies for each species are indicated.Colour
code of sites corresponds to Fig. 3. The large circle for P. castanoides
represents an imprecise locality. Records of evidently introduced P.

subniger on Diego Garcia (Chagos Archipelago), Grande Glorieuse
and Mauritius encircled in grey; it is unclear whether established
populations exist or ever have existed on these islands (Bour 1983,
1984). Insets show plastral aspects of the two species
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Seychellois populations of P. castanoides are only weakly
differentiated and challenged their taxonomic distinctness
(Silva et al. 2010; Fritz et al. 2011, 2012). However, these
studies were based on limited sampling, which is why the
authors deferred nomenclatural readjustments and refrained
from biogeographic conclusions. Using the mitochondrial
cytochrome b (cyt b) gene as a marker, Silva et al. (2010)
studied many samples from all Seychelles islands with terra-
pin populations and found for each species just one haplotype.
From outside the Seychelles, these authors had only two
samples of P. castanoides from Madagascar available, which
differed by four mutational steps from their Seychellois con-
specifics (Silva et al. 2010 report five steps difference, but this
is a typing error for four as is obvious from their GenBank
sequences). Using three mitochondrial and nuclear DNA frag-
ments (2054 bp mtDNA, 2025 bp nDNA), Fritz et al. (2011,
2012) studied one South African, one Kenyan, two Seychel-
lois and three Malagasy samples of P. castanoides, and
confirmed shallow divergence. In all three studies, the
status of the island populations of P. subniger could not
be addressed as only Malagasy specimens were available.

Based on an expanded sampling of terrapins from conti-
nental Africa (Democratic Republic of the Congo, Kenya,
Mozambique, South Africa), Madagascar and the Seychelles
(Fig. 1), we re-investigate in the present article the phylogeog-
raphy of P. castanoides and examine for the first time the
relationships of African, Malagasy and Seychellois P. sub-
niger. For these purposes, we use sequence information of
three mitochondrial genes (12S rRNA, ND4, cyt b) that were
found in two previous studies (Fritz et al. 2011, 2012) to
represent relatively rapidly evolvingmarkers, while all studied
samples of P. castanoides and P. subniger were virtually
undifferentiated in three nuclear loci (coding: C-mos, Rag2;
non-coding: R35). Therefore, we abstain from sequencing
nuclear genes in the present study.

Materials and methods

Sampling

A total of 31 samples of Pelusios castanoides and 47 sam-
ples of P. subniger were examined (Fig. 1; Supplementary
Table S1). One sample each of P. castanoides came from
Kenya and Mozambique, six samples from South Africa
(subspecies castanoides) and seven samples from Madagas-
car (subspecies kapika); samples from the Seychelles (sub-
species intergularis) included five from Cerf, three from La
Digue, and eight from Mahé. Regarding P. subniger, 2
samples came from the Democratic Republic of the Congo,
19 from Madagascar, 8 from Mozambique and 4 from South
Africa (subspecies subniger). The Seychellois subspecies P.
s. parietalis was represented by 13 samples from Mahé and

1 sample from Cerf. Cytochrome b sequences of many of
these Seychellois samples were published previously by
Silva et al. (2010) and downloaded from GenBank (Supple-
mentary Table S1). Sequences of the 12S rRNA, ND4 and
cyt b genes of seven P. castanoides and three P. subniger
had been previously used in the articles by Fritz et al. (2011,
2012). The remaining samples and DNA extractions are
maintained at −80°C in the tissue collection of the Museum
of Zoology, Senckenberg Dresden.

Laboratory procedures and data analyses

For the majority of samples, for which mtDNA sequence
data were not available, sequences of the 12S rRNA,
ND4 and cyt b genes were generated according to Fritz
et al. (2011) and using the same polymerase chain reac-
tion and sequencing primers as in Fritz et al. (2012). The
resulting 12S rRNA sequences were 384 bp long and the
cyt b sequences were 795 bp long. The mtDNA fragment
containing the second half of the ND4 gene (668 bp) also
embraced 189 bp of adjacent DNA, in part coding for
tRNAs (see Results section for details). Owing to small
sample size or low DNA quality, not all DNA fragments
could be amplified and sequenced for all samples. Acces-
sion numbers of newly generated sequences and previous-
ly published sequences used in the present study are
listed in Supplementary Table S1.

For phylogenetic analyses the three mtDNA fragments
were concatenated, resulting in an alignment of 2036 bp.
Homologous sequences of Pelusios bechuanicus, P. upem-
bae, P. williamsi and Pelomedusa lineage I from Vargas-
Ramírez et al. (2010) and Fritz et al. (2011, 2012) were
included as outgroups (Supplementary Table S1), and
aligned using BIOEDIT 7.0.5.3 (Hall 1999). Pelusios bechua-
nicus and P. upembae together are the sister group of P.
subniger, while P. williamsi is the sister species of P. casta-
noides (Fritz et al. 2011, 2012). The genus Pelomedusa,
comprising about ten deeply divergent lineages most prob-
ably corresponding to distinct species (Vargas-Ramírez et al.
2010; Wong et al. 2010), constitutes the sister group of
Pelusios (Fritz et al. 2011). Pelomedusa lineage I (sensu
Vargas-Ramírez et al. 2010) was used for tree rooting.
Phylogenetic relationships were inferred with RAxML 7.2.6
(Stamatakis 2006) using raxmlGUI 1.1 (Silvestro andMichalak
2011) and MRBAYES 3.1.2 (Ronquist and Huelsenbeck 2003).
For both approaches, the alignment was partitioned by
gene. For RAxML calculations, the GTR+G model was
applied across all partitions. For calculations with MRBAYES,
evolutionary models were determined using the Akaike infor-
mation criterion of MODELTEST 2.3 (Posada and Crandall
1998), with the following results: 12S rRNA – GTR+G,
ND4 – GTR+I, tRNA-His – HKY, non-annotated DNA be-
tween tRNA-His and tRNA-Leu – HKY (for identification of
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this fragment, see also Fritz et al. 2011, 2012 and the Results
section), tRNA-Leu – K80, and cyt b – HKY+G.

Using RAxML, 10 independent Maximum Likelihood (ML)
searches using different starting conditions were conducted
and 1000 non-parametric thorough bootstrap replicates were
run and plotted against the tree with the best likelihood value.
Using MRBAYES, two parallel runs, each with 1 cold and 3
heated chains, were computed with 107 generations and every
100th generation sampled. For generating the final 50% ma-
jority rule consensus tree, a conservative burn-in of 4 × 104

was used to sample only the most likely trees.
In addition, genealogical relationships of each of the three

mtDNA fragments of P. castanoides and P. subniger were
examined by parsimony networks. For this purpose, align-
ments of the sequences of either species were analysed inde-
pendently with TCS 1.21 (Clement et al. 2000), with gaps
coded as fifth character state. Under the default 95% criterion,
the 12S rRNA haplotypes of each species were connected
(connection limit for each species: 8 steps). However, with
respect to the ND4 and cyt b sequences, haplotypes of both
species or of P. subniger, respectively, remained unconnected
under the 95% criterion (ND4 and cyt b: 12 steps connection
limit). Therefore, connection of haplotypes was enforced by
setting the limit of mutational steps manually to 50.

Results

All sequences could be easily aligned and used in the
analyses. With respect to the mtDNA fragment containing
the second half of the ND4 gene and adjacent DNA, all
South African samples of Pelusios castanoides had an in-
sertion of 18 bp within what is annotated as one of the two
DNA sections coding for tRNA-Ser in the complete mito-
chondrial genome of a Pelomedusa in GenBank (accession
number AF039066; Zardoya and Meyer 1998a, b). As
explained in Fritz et al. (2011), the respective DNA portion
does not correspond to the secondary structure of a tRNA,
regardless of whether sequences with or without the inser-
tion are concerned. Therefore, Fritz et al. (2011) did not
annotate this piece of DNA, leaving open the possibility that
it is non-functional. This 18-bp-long insertion was not found
in any other terrapin, also not in the geographically closest
specimen from Tofo, Mozambique (Fig. 1; Supplementary
Table S1). However, the only Kenyan sample possessed at
the same position a nine-bp-long insertion, identical with the
first half of the insertion motif of the South African
terrapins.

The topologies of all obtained ML and Bayesian trees
were consistent, and the placement of the other included
Pelusios species was in line with expectations (Fig. 2).
Pelusios williamsi was sister to P. castanoides with maxi-
mum support, and P. upembae and P. bechuanicus together

were the sister group of P. subniger with high support.
Within P. castanoides only weak differentiation was found.
The single sample from Kenya was clearly distinct from all
others; the remaining samples corresponded to three weakly
to well-supported clades whose basal branching pattern was
not well resolved. One well-supported clade contained all
samples from South Africa and the only sample fromMozam-
bique. A weakly supported clade comprised all Malagasy
samples. This Malagasy clade was sister to a weakly
supported clade embracing all samples from the Seychelles;
however, this clade was not recovered by Bayesian analyses.
Divergence within most samples of P. subniger was even
lower than within P. castanoides, except for the two samples
from the Democratic Republic of the Congo. These two
samples were deeply divergent from all other P. subniger,
with branch lengths slightly exceeding the divergence be-
tween P. upembae and P. bechuanicus.

The parsimony networks (Fig. 3) based on the individ-
ual DNA fragments of P. castanoides and P. subniger
confirmed limited divergence for the latter species, except
for the two samples from the Democratic Republic of the
Congo. Sequences of P. subniger from South Africa,
Mozambique, Madagascar and the Seychelles were either
assigned to the same haplotype or to haplotypes differing
by only one or two mutational steps. However, the hap-
lotypes of the two terrapins from the Democratic Republic
of the Congo were always highly distinct, differing by a
minimum of 6 (12S rRNA), 15 (ND4) or 23 steps (cyt b)
from the next-similar haplotype.

Differentiation within P. castanoides was more pro-
nounced (Fig. 3), even though 12S rRNA sequences were
assigned to only two haplotypes being distinct by just one
mutational step. One of these haplotypes corresponded to
terrapins from Kenya, Madagascar and the Seychelles, and
the other to terrapins from Mozambique and South Africa.
ND4 and cyt b sequences represented eight and five hap-
lotypes, respectively, that were in part highly distinct. There
were no shared ND4 and cyt b haplotypes among terrapins
from different geographic origins. Owing to the above men-
tioned 9-bp or 18-bp insertion, ND4 haplotypes of the
Kenyan (one haplotype) and South African samples (four
haplotypes) were highly distinct from all others, although
most probably only a single insertion event had occurred.
The ND4 haplotype of Malagasy terrapins differed from the
Seychelles haplotype by one mutation, whereas the only
sequence from Mozambique differed from the Madagascar
haplotype by three steps and from the Seychelles haplotype
by four steps. With respect to cyt b sequences, the Kenyan
and Malagasy haplotypes differed from the Seychelles
haplotype by six or four steps, and the two South
African haplotypes were different by a minimum of
seven steps from the most similar other haplotype (from
the Seychelles).

U. Fritz et al.



Discussion

Phylogeographic structuring is present within both studied
Pelusios species. Yet, as anticipated for Pelusios casta-
noides by Silva et al. (2010) and Fritz et al. (2011), it does
not conform to expectations. Madagascar and the Seychelles
are well known for their high degree of endemism,
corresponding to a long and independent history of the

respective local faunas and floras. Most of the non-flying
and non-marine vertebrate fauna colonized Madagascar in
the Early Cenozoic, favoured by ocean currents different
from those prevailing today. Only few terrestrial or fresh-
water clades arrived after the change of sea currents in the
Miocene, but even these are, in many cases, differentiated
from their closest African relatives by levels of genetic
divergence typically characterizing distinct species (e.g.,
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the frog Ptychadena mascareniensis; Measey et al. 2007) or
are at least representing endemic haplotype lineages (e.g., the
gecko Hemidactylus mercatorius; Vences et al. 2004). The
granitic Seychelles, where the terrapin species occur, are
remnants of the supercontinent Gondwana and were ‘lost in
the sea’ during the north-eastward rafting of India after its
detachment from Africa, approximately 63.4 million years
ago (Collier et al. 2008). Besides many paleo-endemic species
as a legacy of the breakup of Gondwana, the Seychelles also
harbour a number of younger endemics that arrived later by
oversea dispersal (Nagy et al. 2003; Vences et al. 2003; Klaus
et al. 2010; Daniels 2011; Townsend et al. 2011).

Therefore, it should be expected that the populations of
Pelusios castanoides and P. subniger from Madagascar and
the Seychelles are well-differentiated and genetically deeply
divergent from their continental African conspecifics. In-
deed, Bour (1983) described the Seychellois populations
of each species as a distinct subspecies (P. c. intergularis,
P. s. parietalis), and Bour (1978) described Malagasy P.
castanoides as another distinct subspecies (P. c. kapika;
Fig. 1), which was later synonymized with P. c. castanoides
(Bour 1983), however.

Bour (1983) diagnosed the two subspecies of P. subniger
by minute morphological differences, referring to head sca-
lation and size differences of the intergular scute of the
plastron. However, among 11 P. s. subniger Fritz et al.
(1994) found five terrapins that displayed characters of P.
s. parietalis. Therefore, these authors concluded that the
morphology-based subspecies delineation of P. subniger is
insufficient. This is supported by our current genetic results.
According to our mitochondrial DNA sequences, phylogeo-
graphic structuring within P. subniger is decidedly weak,
with the exception of the deeply divergent samples from the
Democratic Republic of the Congo. Their differentiation
from the remaining P. subniger resembles the divergence
between P. upembae and P. bechuanicus (Fig. 2), two spe-
cies that together constitute the sister group of P. subniger.
This suggests that the continental African populations cur-
rently assigned to P. subniger consist of at least two distinct
species. This finding warrants a denser sampling of conti-
nental African populations and further research. By contrast,
samples of P. subniger from South Africa, Mozambique,
Madagascar and the Seychelles were not only phylogeneti-
cally undifferentiated (Fig. 2), they also shared the same 12S

rRNA and cyt b haplotypes, and ND4 haplotypes from
Mozambique and South Africa were differentiated by only
one or two mutational steps from the common haplotype of
terrapins from Madagascar and the Seychelles (Fig. 3). This
provides evidence for a very recent origin of both the
populations in Madagascar and the Seychelles.

In several other cases it has been shown, or suggested,
that terrapins and land tortoises have been introduced to
islands by humans. There is genetic evidence for the intro-
duction, probably by early settlers from south-east Africa, of
two other species occurring in Madagascar, the hinge-back
tortoise Kinixys zombensis and the helmeted terrapin
Pelomedusa subrufa (Vargas-Ramírez et al. 2010; Wong
et al. 2010; Kindler et al. 2012). The hinged terrapin Pelusios
castaneus has even been introduced to Guadeloupe (Lesser
Antilles) from West Africa, most probably during the time of
the Triangular Trade (sixteenth to early nineteenth century;
Lescure 1983; Fritz et al. 2011 ), and records of P. subniger on
Diego Garcia (Chagos Archipelago), Grande Glorieuse and
Mauritius are considered to also represent introduced terrapins
(Bour 1983, 1984). Three species of land tortoises (Testudo
graeca, T. hermanni, T. marginata) and the European pond
turtle Emys orbicularis have been introduced to several Med-
iterranean islands, sometimes evidently in ancient or prehis-
toric times (Bringsøe et al. 2001; Fritz 2001; Fritz et al. 2006,
2009; Giacalone et al. 2009; Pedall et al. 2011; Vamberger et
al. 2011), and the large-scale translocations of giant tortoises
by seventeenth- to nineteenth-century sailors are well-known
(Townsend 1925; MacFarland et al. 1974; Stoddart and Peake
1979; Chambers 2004) and led to naturalized non-native
populations and admixture with native tortoises (Poulakakis
et al. 2011; Garrick et al. 2012). In all of these cases, terrapins
and tortoises seem to have served as live provision, as ‘living
cans’, during sea voyages (Townsend 1925; MacFarland et al.
1974; Stoddart and Peake 1979; Chambers 2004; Vamberger
et al. 2011) and surplus specimens were either abandoned after
arriving at the final destination or intentionally released some-
where else for later victualling.

Considering this recurrent pattern of translocation of
terrapins and tortoises and the lack of genetic differentiation
among Mozambican, South African, Malagasy and Seychel-
lois populations of P. subniger, we suggest that the popula-
tions on Madagascar and the Seychelles represent just
another case of an introduced and naturalized terrapin spe-
cies. Consequently, we relegate the nominal subspecies P. s.
parietalis Bour 1983 into the synonymy of P. subniger
(Bonnaterre 1789). This has implications for conservation
strategies for the dwindling Seychellois populations, cur-
rently considered to represent a Critically Endangered taxon
(Gerlach 2008b), and suggests that measures should rather
focus on endemic species on this archipelago.

It remains unclear when P. subniger was introduced to
Madagascar and the Seychelles. However, we assume that

�Fig. 3 Parsimony networks for the three DNA fragments of Pelusios
castanoides and P. subniger. Geographic origins of samples are colour-
coded. Circle size corresponds to haplotype frequency. Slices indicate
percentages of terrapins of different geographic origins having the
respective haplotype. If not otherwise noted, lines connecting two
haplotypes represent one mutational step. Missing node haplotypes are
shown as small black circles. The high level of divergence of the ND4
haplotypes of Kenyan and South African P. castanoides is caused by a
9-bp or 18-bp insertion, respectively (see Results section)
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early settlers and sailors arriving from Africa were respon-
sible, as in the case of K. zombensis, which is thought to be
introduced to Madagascar between 2300 and 1000 years
before present (Kindler et al. 2012).

The situation of P. castanoides could be different. Phy-
logeographic structuring within this species is somewhat
more pronounced than within P. subniger (if the Congolese
samples of P. subniger are not considered). Pelusios casta-
noides from Madagascar and the Seychelles are at least
weakly differentiated from continental African samples
(Figs. 2 and 3). However, the degree of differentiation of
Malagasy and Seychellois P. castanoides from the only
available sample from Mozambique is weaker than the
differentiation among continental African samples from
Kenya and South Africa when these are compared with the
Mozambican specimen (Fig. 3). In view of this weak differ-
entiation, we cannot exclude that an expanded continental
African sampling would lead to the discovery of the same
haplotypes as in Madagascar and the Seychelles. Therefore,
we refrain from explicit taxonomic and biogeographic con-
clusions. Nevertheless, the observed sequence variation
allows speculating that, when the Malagasy and Seychellois
populations of P. castanoides were introduced from the
African continent, they must have originated from two dis-
tinct source regions and, consequently, from two distinct
introduction events. If these populations result from natural
transoceanic dispersal, they must either derive also from two
distinct source regions or, via a stepping stone model, from
an initial colonization of Madagascar and subsequent dis-
persal to the granitic Seychelles. All of these scenarios are in
accordance with the finding that haplotypes of the ND4 and
cyt b genes (two genes faster evolving than the more con-
served 12S rRNA gene; e.g., Caccone et al. 1999; Jiang et
al. 2007) from the Seychelles and Madagascar are consis-
tently different and reciprocally monophyletic in maximum
likelihood analyses (Figs. 2 and 3). The southernmost and
northernmost parts of the continental range of P. castanoides
(South Africa, southern Mozambique and Kenya, respec-
tively) harbour clearly distinct haplotypes, so that these
regions can be clearly ruled out as possible sources for the
terrapins in Madagascar and the Seychelles. However, we
had no samples available from much of the African range of
P. castanoides, corresponding to approximately 2,500 km
along the Mozambican and Tanzanian coast. Further phylo-
geographic studies on P. castanoides should focus on this
large region to examine whether the populations in Madagas-
car and the Seychelles could have been introduced from there.

Our findings with respect to P. subniger underline that a
good understanding of the phylogeography and ‘correct
taxonomy’ are the necessary prerequisites for designing
any well-founded conservation strategy and that further
research is warranted to assess the status of Malagasy and
Seychellois P. castanoides.
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