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BIOAVAILABILITY AND BIOEQUIVALENCE 
 
By H. S Steyn,  

Statistical Consultation Services,  North-West University (Potchefstroom Campus)   

 
 
1. Bioavailability (see Westlake, 1988) 

 

1.1 Absorption:  

 The aim is to get the active ingredient of a drug to the site of action in the human body.  Since this 

site (often an organ or tissue) is usually not amenable to sampling, the degree of absorption in the 

bloodstream can be measured by taking blood samples and determining the concentration of active 

ingredient over time.  The drug can be administered in a number of ways, mainly orally 

(extravascular) or by injection (intravenous or intramuscular). 

 

1.2 Elimination:   

This is the removal of the active ingredient from the body.  The major routes of elimination are from 

the bloodstream via the kidney into urine and fecal excretion. 

 

1.3 Blood-level trials:  

 One dose of a drug formulation is administered to each of n subjects (patients or volunteers) and 

then a series of blood samples are taken from each subject.  These samples are then assayed for 

active ingredient content.  The results for each subject is a sequence of blood drug concentrations 

over time.  A typical blood-level profile for one subject can be displayed as in Figure 1. The choice of 

sampling times is critical if an accurate characterization of the time course of the concentrations is 

required.  More frequent samples are required in the steep ascent up to the peak blood level and at 

the region of peak levels, while longer time intervals will suffice in the decaying portion of the curve.  

Sampling also ought to be continued until the concentration becomes negligible, usually more than 

3-5 times the estimated half-life of the ingredient content, but, according to EMEA Guidline 

(Committeefor Medicinal Products for Human Use, 20 January 2010), not longer than 72 hours. 

 

1.4 Pharmacokinetic models:   

These are mathematical representation of human organs as a series of compartments with linear 

transfers between them.   We discuss the simplest and most frequently encountered examples of 

such models: 

 

 

(a) One compartment model, intravenous: 

 

 

D  ek  Compartment 
(Blood) 
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Here dose D  is injected instantaneously into the bloodstream at time zero, and ek  is the 

elimination rate of the active ingredient.  By means of a differential equation over time, the blood 

concentration as function over time can by modelled as: 

 

  0
e itC

kY t ei
 ,  (1) 

 

where  , 1,2, ,it i    are the time points and 0C  is the initial concentration injected at time 

zero. 

 

 

Figure 1: Blood-level profile of one subject 
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(b) One compartment, extravascular (or open) model: 

 

 

 

 ak    ek  

Df  

     

 

Here an amount   of active ingredient is administered orally and then absorbed into the 

bloodstream, from which elimination occurs as before.  If V  is the volume of distribution and Df   

is the amount of drug which is absorbed into the bloodstream, then VfA D / .  Let ak  be the 

absorption rate constant.  The differential equation in this case results in: 

 

   e i a ik t k ta
i

a e

k
Y t A e e

k k
   


, (2) 

 

where it is assumed that a ek k . 

 

 

 

(c) Two compartment, extravascular (or open) model: 

 

                                                                        12k  

 

      ak  

            D  21k  

 

                                       ek  

  

Here the rate constants 12k  and 21k  give the rates from the blood to tissue and back.  This 

model will not be discussed this any further in this text. 

 

 

1.5 Definition of Bioavailability:  

Compartment 
(Blood) 

Compartment 1 
(Blood) 

Compartment 2 
(Tissue) 
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 It is the extent and rate of which a substance or its therapeutic moiety is delivered from a 

pharmaceutical form (i.e. a tablet, capsule, injection, etc.)  into the general circulation (Wijnand, 

1992). 

In the case of compartment models, where the blood concentration curve over time is given by  

 Y t , the bioavailability are given by the following characteristics: 

 

(a) To measure extent:  the area under the curve  AUC : 

 

  
0

0 ( )
T

AUC T Y t dt   , 

 

  
0

0 ( )AUC Y t dt


   , 

 

where  T is the last sample's time point (in the example above T=48). 

 

 

 

(b) To measure rate: 

 

 Half-life  ½t :  the time required for the blood concentration to fall to half its value at time zero 

(when the drug was administered intravenously).  For one-compartment models, this can be 

calculated as: 

 

½ ln 2 / et k . (3) 

 

 Peak time:  The time, maxt ,  associated with the maximum concentration, maxC .   It can be 

calculated by solving the following equation in t:  

 

 
0

dY t

dt
 . (4) 

 

1.6 Absolute bioavailability:  

 It is the AUC for extravascular administration (with dosage evD  relative to the AUC of intravenous 

administration, with dosage ivD ):  (Wijnand, 1992): 
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 
 
0

0
ev iv

iv ev

AUC D
F

AUC D


 


. (5) 

 

1.7     Compartmental bioavailability:   

Given a series of measured concentrations over time, the above pharmacokinetic models can be 

fitted to data to obtain estimates of the pharmacokinetic constants ek , 0C , ak , A , 12k and  21k . 

Nonlinear regression methods can be used to fit these models, but the estimates of the 

abovementioned constants and the estimated concentrations  Y t , may be very different from the 

true values. This is usually due to large variability and few data points. However, according to the 

European Medicines Agency (EMEA) ‘Guideline on the Investigation of Bioequivalence’ (see 

Committee for Medicinal Products for Human Use, 20 January 2010), this method is not acceptable 

for the estimation of pharmacokinetic characteristics.   

 

1.8    Non-compartmental bioavailability:  

In practice it is simpler to estimate the bioavailability for each subject by directly using its blood-level 

profile (as in the example). 

 

(a) AUC is calculated by means of the trapezoidal rule (Wijnand, 1992);  where  

, 1, ,iC i    are the measured concentrations at it : 

   

      1 1
2

0 ½ i i i ilin
i

AUC T t t C C


 


       . (6) 

For example, the area of the trapezium indicated on the blood-concentration profile of Figure 1 is 

       10 9 10 9½ ½ 24 20 3.86 5.39 18.5t t C C        . Equation (6) gives the accumulation of 

areas of all such trapezia in the figure. Here it is assumed that the  tY -curve is linear between time-

points (as displayed in Figure 1). 

 

However, when one makes the assumption that the  nY t -curve is linear between time-points 

(which is approximately the case for larger it  - values), the calculation becomes (Wijnand, 1992): 

 

     1 1log
2 1

0 ½ / n .i
i i i i

i i

C
AUC T t t C C

C



 
 

  
     

   
   (7) 

 

The area between   and  can be taken as 
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     1
/

t

T
e

ee t T

CY t dt Y t Y T k kk







 
   
 

 , 

and therefore, 

 

    0 0 T

e

CAUC AUC T k    . (8) 

 

 

To obtain ek  from the blood-level profile, note that for the one compartment intravenous model: 

            1ln ,eY t K k t   

where 1K is some constant and  therefore ek  is the slope of the least squares fit of the linear 

relationship between  ln( )iC   and  it .  

              

For the one compartment extravascular model, note that for larger t (usually m a xt t ), 

   2
ett

kY K e  , 

where 2K  is some constant, and ek  is again  the slope of the linear relationship between  ln( )iC    

and larger values of it .   

 

According to the EMEA guidelines, ek  is a reliable estimate when  0AUC T  0.8 0AUC 
and there are at least 3-4 time points in the elimination phase. 
 
 

 maxC  is the maximum  measured  concentration obtained from the blood-level values.  

 maxt  is the time after administration of the  drug that corresponds to the time-point of maxC . 

 ½t  is calculated from (3) using the estimated value of ek . 

 
 
Example 1: 

Serum theophylline concentrations following a single dose of 600 mg were determined on a subject at 20:00 

on day 1 and then again at 21:00, 22:00, 24:00. On day 2 the concentrations were determined at 02:00, 

04:00, 08:00, 12:00, 16:00, and 20:00, and on day 3 at 08:00 and 20:00.  The time (in hours) after 

administration  t and the concentrations  /C mg    are displayed in Table 1.   

 

The lower part of the table gives the pharmacokinetic characteristics for this subject’s blood-level profile.  

maxC  is the maximum of the C-values in the second column, while maxt is the associated t -value.  To 

calculate AUC, the third column gives the areas for consecutive time intervals (assuming  tY  is linear 

between these points) and the sum therefore results in the  0 48
lin

AUC  value (following formula (6)).  

The fourth column gives the areas per interval using formula (7), with its total  
log

0 48AUC  . The 
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negative of the slope of the linear regression line of ln C  values (fifth column) with their associated times t 

gives  ݇௘.  This value is used to calculate 1
2

t  and  0
lin

AUC   and  
log

0AUC  .  Note that the slope 

was only determined by using data points in the downward part of the profile (usually the points from 

 max max,t C  onwards). 

 
 
Table 1: Data of times with concentrations of one subject, pharmacokinetic characteristics derived from data. 
 

Hours after 
dose (t) 

Serum 
concen-
tration 
(C) 

Area per 
interval 
(linear) 

Area per 
interval 
(log) ln C 

0 0*       

1 0.14 0.07 0.07#  -1.966 

2 0.6 0.37 0.32  -0.511 

4 1.45 2.05 1.93  0.372 

6 3.57 5.02 4.71  1.273 

8 5.57 9.14 8.99  1.717 

12 8.14 27.42 27.10  2.097 

16 7.53 31.34 31.32  2.019 

20 5.39 25.84 25.60  1.685 

24 3.86 18.5 18.33  1.351 

36 1.29 30.9 28.14  0.255 

48 0.42 10.26 9.30  -0.868 

* value below detection limit, taken as 0 

# use linear area, log not defined when C = 0 

Cmax 8.14 

tmax 12 

AUC(0-48)lin 160.9 
AUC(0-48) 
log 155.8 

ek  0.086 

½t  8.08 

AUC(0-inf)lin 165.8 
AUC(0-inf) 
log 160.7 

 

Note: The EXCEL spreadsheet which was employed to perform most of the calculations shown here is 

attached to this document as supplementary material.  
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2. Bioequivalence  

   

 Birkett (2003) defined bioequivalence by stating that, "two pharmaceutical products are bioequivalent 

if they are pharmaceutically equivalent and their bioavailabilities (rate and extent of availability) after 

administration in the same molar dose are similar to such a degree that their effects, with respect to 

both efficacy and safety, can be expected to be essentially the same. Pharmaceutical equivalence 

implies the same amount of the same active substance(s), in the same dosage form, for the same 

route of administration and meeting the same or comparable standards."  

 

 

2.1 Hypothesis of Bioequivalence (see Steinijans & Hanschke, 1990): 

 

Two drug formulations whose rate and extent of absorption differ by a prescribed 100 K% or less, 

are generally considered as equivalent.  The Food and Drug Administration (FDA) requires this 

percentage to be at most 20%. Let T  and R  be the expected means or medians of 

characteristics like the AUC, or maxC , etc., of a test  T and a reference  R formulation, 

respectively. We then consider T and R to be bioequivalent if 

 T R RK     

or 

 1 1T RK K     . 

 

Generally bioequivalence is then obtained if 

 1 2T RK K   , where 

 1 20 1K K   . 

 

Usually K1 = 0.8, K2 = 1.25, since 1.25/1 = 1/0.8 (see FDA Guidance, Centre for Drug Evaluation and 

Research, 2003, as well as EMEA Guideline, Committee for Medicinal Products for Human Use, 20 

January 2010).  The values of K1 = 0.7 and K2 =1.43 have also been suggested, especially for maxC  

in fast releasing drugs.  

 

Biostatisticians have repeatedly pointed out that the conventional null-hypothesis RT    is not 

appropriate in bioequivalence testing.  Since the primary concern here is the protection of the patient 

(i.e. the consumer) against the acceptance of bioequivalence if it is not true.  Therefore, to limit this 

consumer risk of erroneously accepting bioequivalence, the alternative hypothesis  1H  should be 

bioequivalence and bioinequivalence has to be formulated as the null-hypothesis  0H . 
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Therefore: 

 

0 1: T RH K       or      2T R K    

 (9) 

  1 1 2: T RH K K    

 

 

2.2 Testing procedures of bioequivalence: 

 

 Split up the hypotheses in (9) for two one-sided tests: 

 

  01 1: T RH K       against     11 1: T RH K    

 and 
  02 2: T RH K       against     12 2: T RH K    

 
The rejection of both 01H  and 02H  at a 100 %  level is equivalent to the inclusion of the shortest  

 100 1 2 %  confidence interval (CI) for RT    within the bioequivalence range  1 2,K K . 

 
The procedure in the case of the bioequivalence range (0.8,1.2) and 05.0 (i.e. using a 90% 

confidence interval for θ= RT  ) is displayed in Table 2 (see Steyn et al.,1988). 

 

In the second part of the table a method is proposed where one can conclude that no decision 

concerning bioequivalence can be made; this opens the possibility of repeating the bioequivalence 

trial (e.g. by using more subjects). 

 

 

2.3 The two-way crossover design (see Steinijans & Diletti, 1983): 

 

This design enables the researcher to estimate the treatment (i.e. T vs. R) effect by controlling for 

subject and phase effect.  A random sample of 2
n subjects is drawn from the n (even number) 

available subjects (sequence 1-group) and the test formulation is administered to them. According to 

the EMEA guideline (Committee for Medicinal Products for Human Use, 20 January 2010), the 

requirement is 12n   . After a washout-period they receive the reference formulation.  For the 

remaining 2
n  subjects (sequence 2 group) the sequence of administration of the formulations is 

switched around. 

 

Table 3 displays the expected values ijky  of the measurements,  1, 2i   (sequences), 1, 2j   

(phases) and 1,2, , 2
nk   (subjects). In the table μ is the overall mean, j  the thj  phase effect, 
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and    is the  th , (  = 1, 2) treatment effect (all fixed effects).  A random effect iks
 
is associated 

for each subject 1,2, , 2
nk   within the thi  sequence. 

 
Note also that it is assumed that the carryover effect is zero.  This is accomplished by ensuring that 

a sufficiently long washout-period of 5-6 half-lives is used to make certain that no measurable 

residual drug is carried over from the first to the second phase. 

 
 
 

 
Table 2:  Schematic presentation of the possibilities of rejecting or accepting bioequivalence using the interval and the adapted 
interval methods. 

Hypothesis Test 

Possibilities in terms of the 
confidence limits 

 , *L U  Criteria Decision 

  0,8L   Reject bioequivalence 

  

Interval method 

1,2U   Reject bioequivalence 

  

1 : 0,8 1, 2H    
 

0,8; U 1, 2L    Accept bioequivalence 

0 : 0,8H    
 

0,8; 1,2L U   Reject bioequivalence 

 
 or 
 

 0,8L U   No decision 

        1, 2    
0,8U   Reject bioequivalence 

Proposed method 
 

1, 2L U   No decision 

  
1,2L   Reject bioequivalence 

   
0,8; 1, 2L U   Accept bioequivalence 

   
0,8; 1,2L U   No decision 

* ,L U is respectively the lower and upper limits of the 90% confidence interval for ߠ. 
 

 

 

(
L

)
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L
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(
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(
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(
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(
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Denote the measurements as: 
 

 ijk ijk ijkY y e  , 

 

where ijke  are the error terms which are   20, eN   distributed.  Further, denote ijY   as the mean 

over the measurements in the thi  sequence and thj   phase.   

 
 

Table 3:  Expected values  ijky  in a two-way crossover design, 1,2, , 2
nk   . 

 Phase 1 Phase 2 

Sequence  group 1 ky11  

1 1 1ks      

ky12  

2 2 1ks      

Sequence group 2 ky21  

1 2 2ks      

ky22  

2 1 2ks      

 
 

Note that other designs can also be used: (a) a parallel design (i.e. only one phase) when ½t  is large 

implying a very long washout period, and (b) a crossover design with replicates (for example two 

phases for each product), which have the following advantages (see Centre for Drug Evaluation and 

Research, 2003): (1) allow comparisons of within-subject variances for the test and reference 

products, (2) provides more information about the intrinsic factors underlying formulation 

performance, and (3) reduces the number of subjects participating in the BE study. 

  

 

2.4    Test for carry-over effect: 

 

To estimate the sequence effect, the means over all subjects (for both phases) in sequence 2 can be 

subtracted from the means over all subjects for both phases in sequence 1: 

 

  11 12 21 22

1

2
Y Y Y Y      . 

Testing for a carry-over effect is equivalent to testing for a sequence effect (see Cotton, 1989). This 

can be done by an analysis of variance (ANOVA) with sequence as the main effect and subjects 

within sequences as the error effects (i.e. the interaction between the random subject and the 

sequence effects).  If this analysis results in a non-significant sequence effect, no carry-over effect 

can be concluded. 
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Note that the EMEA guideline (Committee for Medicinal Products for Human Use, 20 January 2010) 

states: “If there are any subjects for whom the pre-dose concentration is greater than 5 percent of 

the maxC  value for the subject in that period, the statistical analysis should be performed with the 

data from that subject for that period excluded. In a 2-period trial this will result in the subject being 

removed from the analysis. The trial will no longer be considered acceptable if these exclusions 

result in fewer than12 subjects being evaluable”. 

      
 
2.5    Estimation of the treatment effect: 

 

Take     11 22 12 21

1 1

2 2
D Y Y Y Y         , (10) 

                                                     

then from Table 3 it follows that   1 2E D     , the difference in treatment effects.  Under the 

assumption of normality, the  %21100   confidence interval for 1 2  is: 

 

 
 2,1 2 2 /D t n MSE n    , (11) 

 
where MSE is the mean square error in the analysis of variance (ANOVA) with fixed effects for 

treatment and phase and random effect for subjects, but without any interactions.  The term

 21,2 nt  represents the  th21  quantile of the t - distribution with  2n    degrees of 

freedom.     

Note that if the sequence group sizes are n1 and n2 instead of 2n  , then (11) becomes 

 

 1 2
1 2

1 1
2,1 2 / 2D t n n MSE

n n


 
     

 
. (12) 

 

However, if a significant sequence effect (i.e. carryover effect) exists, only the first phase's data can 

be used.  The treatment effect can then be estimated by 

 

11 21D Y Y    , (13) 

with  

   2 2
1 1 2 2

1 2

1 1

2

n S n S

n n

  
 

, (14) 

 
substituted for / 2MSE in equation (12) and where in and iS  are the sizes and standard 

deviations of the two sequence groups in phase 1, respectively. 
 
 
 

2.6 Ratios and log-transformation: 
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Since we rather need a  100 1 2 %  CI for T R  and not for T R   as equation (11) 

suggests, take T Tn    and R Rn   , so that 

  

  T R T Rn       

 
or 

 
T R

T R e    . (15) 

 

Taking the confidence interval in (11) as  ,L U , the  100 1 2 %  CI for T R   is given by 

 ,L Ue e . 

Let ijkX  represent measurements like the AUC  or the value maxC  etc., and define ijk ijkY nX  , 

then 
 

De ��        
2 / 2

11 12 22 212 2
1 1

exp ½ / ½ /
n n

n n
k k k k

k k

nX nX nX nX
 

   
     

   
      

 

 =    
2 22 2

11 12 22 21
1 1

/ /
n n

n n

k k k k
k k

X X X X
 

    

 

= 1 2GM GM , (16) 

 
where GM1 is the geometric mean of the within subject ratio of T relative of R for the first sequence 

and GM2 that for the second sequence.  Therefore  1 2GM GM , which again is the geometric 

mean of the two sequence’s geometric means, can be used as an estimator for /T R  , since  

  

  RD TE e e  
. 

 
Note that (16) also holds if the sequence group sizes are n1 and n2 instead of 2n . 

 
 
2.7 A nonparametric confidence interval for T R   : 

 
In the parametric CI above, the assumption of normality for the logarithms of the measurements like 

AUC, maxC , and ½t  has to be made.  Hauschke et al. (1990) suggested the following 

nonparametric method when normality does not necessarily hold: 

 Let 1 2ij i j i jYY Y  , be the intra individual differences of the logarithmic transformed 

measurements for the first and second phases for sequence group i, where  1, 2, , ij n   . 

 

The two-phase crossover design can be reduced to a two-sample situation concerning the treatment 

sequences T R  and  R T  , which differ only by the shift parameter 1 22 ( / ) 2 ( / )T Rn n     . 
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A two-sample test can be performed with the following two sets of one-sided hypotheses: 

 

01 1 11 1: ( / ) : ( / )T R T RH n nK against H n nK          

and 

 02 2 12 2: ( / ) : ( / ) .T R T RH n nK against H n nK         
         

 

 

 

As before, the rejection of H01 and H02 by nonparametric Mann-Whitney tests each at level  , is 

equivalent to the inclusion to the corresponding nonparametric   100 1 2 %  CI for  T R   in 

the bioequivalence range  1 2,K K .  

 

The procedure is the following: 

 

a) From the 1n  differences 1 jY  between the first and second phases in the treatment sequence 

T/R and the 2n  differences in the treatment sequence R/T, the 1 2n n  pairwise difference  

1 2 *j jY Y   1 21, , , * 1, ,j n j n    are calculated. 

b) Rank these differences according to magnitude. 

c) The median to these differences serves as Hodges-Lehmann point estimator for 2 ( / )T Rn     

and if it is divided by 2 and the exponent is taken, this will estimate  T R   . 

d) Table 2 from Hauschke et al. (1990) gives the indices corresponding to the ranked values 

1 2 *j jY Y  for given 1n  and  2n  values 12 .  These differences divided by 2 give the lower and 

upper 90% (in the case of  0.05  ) confidence limits for ( / )T Rn    (The table is 

reproduced here as Table 4).  

e) Exponentially transformed lower and upper limits give the 90% confidence limits for  T R  . 

f) For 1 2, 12n n  , but 1 40n   and  2 20n   other   values the indices are determined as 

follows: 

 Use the tables of Milton (Milton, 1964) (see the PDF-document ‘Tables of Mann-Whitney 

critical values’ as appendix to this document). 

 Read the value k u  from the tables at 1n m  and  2n n  and   r y xP U u    .           

 The index for the lower limit of the  100 1 %  CI for ( / )T Rn    is  k+1  (e.g. for 

1 212, 12, 0.05, 42n n k    , so that the index is 43). 

 The index for the upper limit is 1 2n n k  (in the example above 12x12-42=102).                 
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g)  When either  1 40n   or  2 20n  , the asymptotic normality of the Mann-Whitney U-statistic can 

be utilised as follows: 

 

 1 2 1 2 1 2

1
1 /12

2
k z n n n n n n

      
, (17) 

where z  is the standard normal  1 100th  quantile  (e.g. for 0.05, 1.645z   ), and 

 x is the largest integer x . 

 For example when n1 = 25 and n2 = 30, then 
 

1
1.645 25 30 56 /12 (25 30)

2
k

        
 

   

 277.68 277  . 

 
 

2.8 Bioequivalence for maxt
 

 
The EMEA guideline (Committee for Medicinal Products for Human Use, 20 January 2010) states: “A 

statistical evaluation of maxt  is not required. However, if rapid release is claimed to be clinically 

relevant and of importance for onset of action or is related to adverse events, there should be no 

apparent difference in median maxt  and its variability between test and reference product.” 

 
 

Table 4:  Indices for the construction of 90%-confidence intervals. n1 and n2 denote the numbers of subjects 

in the respective treatment sequences test/reference and reference/test.  Listed below these indices is the 

exact confidence coefficient. 

 

n1  n2=4  5  6  7 8 9 10 11  12

4  2/15 
0.9429 

3/18 
0.9365 

4/21 
0.9333 

5/24
0.9273 

6/27
0.9273 

7/30
0.9245 

8/33
0.9241 

 9/36 
0.9223    

10/39
0.9220 

5  3/18 
0.9365 

5/21 
0.9048 

6/25 
0.9177 

7/29
0.9268 

9/32
0.9068 

10/36
0.9171 

12/39 
0.9008 

13/43 
0.9103 

14/47
0.9182 

6  4/21 
0.9333 

6/25 
0.9177 

8/29 
0.9069 

9/34
0.9266 

11/38
0.9187 

13/42
0.9121 

15/46 
0.9066 

17/50 
0.9017 

18/55
0.9169 

7  5/24 
0.9273 

7/29 
0.9268 

9/34 
0.9266 

12/38
0.9027 

14/43
0.9061 

16/48
0.9093 

18/53 
0.9122 

20/58 
0.9147 

22/63
0.9169 

8  6/27 
0.9273 

9/32 
0.9068 

11/38 
0.9187 

14/43
0.9061 

16/49
0.9170 

19/54
0.9073 

21/60 
0.9169 

24/65 
0.9092 

27/70
0.9021 

9  7/30 
0.9245 

10/36 
0.9171 

13/42 
0.9121 

16/48
0.9093 

19/54
0.9073 

22/60
0.9061 

25/66 
0.9053 

28/72 
0.9048 

31/78
09045 

10  8/33 
0.9241 

12/39 
0.9008 

15/46 
0.9066 

18/53
0.9122 

21/60
0.9169 

25/66
0.9053 

28/73 
0.9108 

32/79 
0.9014 

35/86
0.9069 

11  9/36 
0.9223 

13/43 
0.9103 

17/50 
0.9017 

20/58
0.9147 

24/65
0.9092 

28/72
0.9048 

32/79 
0.9014 

35/87 
0.9121 

39/94
0.9092 

12  10/39 
0.9220 

14/47 
0.9182 

18/55 
0.9169 

22/63
0.9169 

27/70
0.9021 

31/78
0.9045 

35/86 
0.9069 

39/94 
0.9092 

43/102
0.9113 
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Example 2 (Steinijans & Diletti, 1983): 

 

Twelve healthy volunteers participated in a crossover study to investigate the influence of food intake 

on bioavailability of theophylline from a sustained-release aminophylline preparation.  The case in 

which the drug was taken after fasting overnight and a standard breakfast was eaten 2 hours after 

taking the drug, serves as the reference (R).  Drug intake directly after consumption of the same 

standard breakfast is the test situation (T).  Serum theophylline levels were determined before and at 

0.5, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 24 and 32 hours after administration of drugs. 

 

Table 5: AUC-values per subject for Reference and Test  formulations. 
 

Subject  Sequence 
Reference 
(R)  Test (T) 

Ratio 
T/R  ln(T/R) 

1  T/R  136.0  135.7  0.998  ‐0.0010 

2  T/R  152.6  155.3  1.018  0.0076 

3  R/T  123.1  148.9  1.210  0.0826 

4  R/T  77.0  81.2  1.055  0.0231 

5  T/R  115.7  139.2  1.203  0.0803 

6  T/R  72.0  91.7  1.274  0.1050 

7  R/T  116.4  118.7  1.020  0.0085 

8  T/R  151.1  133.2  0.882  ‐0.0548 

9  R/T  118.9  115.6  0.972  ‐0.0122 

10  T/R  156.1  150.3  0.963  ‐0.0164 

11  R/T  222.4  223.9  1.007  0.0029 

12  R/T  158.1  154.1  0.975  ‐0.0111 
 

 

Table 5 displays the AUC-values for R and T for each subject as well as the ratio /R T  and 

 /n T R .  Using the sequences in which subjects received the treatments, Table 6 was 

constructed as data for the analyses of variance (ANOVAs) in Tables 7 and 8.  

  

Table 7 displays the results of an ANOVA where the sequence effect is tested for significance.  This 

was done by using the error mean square for the random subject effect which was nested within 

sequence (i.e. the sequence by subject interaction, sequence* subject).  Since p=0.93, no sequence 

effect existed, from which the conclusion can be drawn that no carry-over between phases occurred. 

 

Finally, a 3-way ANOVA with main effects treatment, phase and subject (random) and  n AUC as 

dependent variable, was performed.  The ANOVA results are displayed in Table 8, while the 

estimated treatment difference D  and its standard error are given in Table 9 as 0.018 and 0.014. 
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Table 6: Data of AUC and ln(AUC) values for analyses of variance (ANOVAs). 
 

Subject  Sequence  Treatment  Phase  AUC  ln(AUC) 

1  T/R  R  2  136  2.134 

2  T/R  R  2  152.6  2.184 

3  R/T  R  1  123.1  2.090 

4  R/T  R  1  77  1.886 

5  T/R  R  2  115.7  2.063 

6  T/R  R  2  72  1.857 

7  R/T  R  1  116.4  2.066 

8  T/R  R  2  151.1  2.179 

9  R/T  R  1  118.9  2.075 

10  T/R  R  2  156.1  2.193 

11  R/T  R  1  222.4  2.347 

12  R/T  R  1  158.1  2.199 

1  T/R  T  1  135.7  2.133 

2  T/R  T  1  155.3  2.191 

3  R/T  T  2  148.9  2.173 

4  R/T  T  2  81.2  1.910 

5  T/R  T  1  139.2  2.144 

6  T/R  T  1  91.7  1.962 

7  R/T  T  2  118.7  2.074 

8  T/R  T  1  133.2  2.125 

9  R/T  T  2  115.6  2.063 

10  T/R  T  1  150.3  2.177 

11  R/T  T  2  223.9  2.350 

12  R/T  T  2  154.1  2.188 
 
 

  For 0.05  , a 90% CI is required for the expected treatment difference  1 2  . 

 Since  10,0.9 1.812t  , the confidence limits are 

   0.018 1.812 x 0.014 = (-0.007, 0.043), 

and according to Table 9: (-0.008, 0.044).  

 

In terms of a ratio, /T R   is estimated by 0.018 1.018De e   , while the 90% CI is (0.992,1.045). 

Clearly this 90% CI is contained within (0.8, 1.25) and therefore bioequivalence can be concluded. 
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Table 7: The SPSS output of an ANOVA to test for a carry-over effect. 
 

Dependent 
Variable:  

ln(AUC) 

Source 

Type III 
Sum of 
Squares df 

Mean 
Square F Sig. 

Intercept Hypothesis 107.371 1 107.371 3231.912 .000 
Error .332 10 .033a     

Sequence Hypothesis .000 1 .000 .008 .930 
Error .332 10 .033a     

Sequence 
* Subject 

Hypothesis .332 10 .033 27.952 .000 

Error .014 12 .001b     

a.  MS(Sequence * Subject) 

b.  MS(Error) 

 
Table 8: The SPSS output of a 3-way ANOVA with main effects Treatment, Phase and Subject. 

Dependent 
Variable:  

ln(AUC) 

Source 

Type III 
Sum of 
Squares df 

Mean 
Square F Sig. 

Intercept Hypothesis 
107.371 1 107.371 3552.250 .000 

Error .332 11 .030a     
Treatment Hypothesis 

.002 1 .002 1.558 .240 

Error .012 10 .001b     
Phase Hypothesis 

3.044E-05 1 
3.044E-
05 

.025 .878 

Error .012 10 .001b     
Subject Hypothesis 

.332 11 .030 24.547 .000 

Error .012 10 .001b     

a.  MS(Subject) 
 
b.  MS(Error) 
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Table 9: SPSS output for estimated treatment effect and standard error. 
 

Contrast Results 

Treatment Difference 
Contrast 

Dependent 
Variable 

ln(AUC) 
Level 
2 vs. 
Level 
1 

Contrast Estimate .018 

Hypothesized Value 0 

Difference 
(Estimate - 
Hypothesized) 

.018 

Std. Error .014 

Sig. .240 

90% 
Confidence 
Interval for 
Difference 

Lower 
Bound -.008 

Upper 
Bound .044 

 

 

The nonparametric estimates can be obtained by using the EXCEL spreadsheet (most of the 

calculations can be performed in this way) which is attached to this document as supplementary 

material. The calculations and output from the EXCEL spreadsheet is displayed in Table 10. Here 

the 6th column gives the intra-individual differences of phases 1 vs 2, while the next 6 columns are 

the pairwise differences between the 2 sequences’ values in column 6. These 36 values are ranked 

in the last column and indices 1 – 36 are then allocated. From Table 4 the index values 8 and 29 are 

obtained, from which the values -0.030 and 0.214 are read off from the ranked column. Also, the 

median is the mean of the 18th and 19th values, i.e. 0.5 (0.051+0.064) = 0.058. The ratio /T R  is 

estimated by  0.058/ 2 1.029e   and the 90% lower limit is given by 0.030 / 2 0.985e   ,while the upper 

limit is  0.214 / 2 1.113,e   and therefore bioequivalence can be concluded. 

 

Note that due to a possible deviation from normality of the ln(AUC) values, the upper CI limit of the 

ratio differs from those obtained above.  
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Table 10: Display of the EXCEL spreadsheet used to calculate the nonparametric estimates.  
 

Sub-
ject 

Se-
quen-
ce 

Refe-
rence 
R 

Test 
T ln(R)  ln(T) 

Dif 
(Ph1-
Ph2) Y11-Y2j 

Y12-
Y2j Y13-Y2j 

Y14-
Y2j 

Y15-
Y2j 

Y16-
Y2j Index 

Ranked(Y1j-
Y2j*) 

3 R/T 123.1 148.9 4.813 5.003 -0.190 0.188 0.208 0.375 0.432 0.064 0.152 1 -0.154 

4 R/T 77.0 81.2 4.344 4.397 -0.053 0.051 0.071 0.238 0.295 -0.073 0.015 2 -0.152 

7 R/T 116.4 118.7 4.757 4.777 -0.020 0.017 0.037 0.204 0.261 -0.107 -0.018 3 -0.107 

9 R/T 118.9 115.6 4.778 4.750 0.028 -0.030 -0.011 0.157 0.214 -0.154 -0.066 4 -0.073 

11 R/T 222.4 223.9 5.404 5.411 -0.007 0.005 0.024 0.192 0.249 -0.119 -0.031 5 -0.066 

12 R/T 158.1 154.1 5.063 5.038 0.026 -0.028 -0.008 0.159 0.216 -0.152 -0.063 6 -0.063 

1 T/R 136.0 135.7 4.913 4.910 -0.002 7 -0.031 

2 T/R 152.6 155.3 5.028 5.045 0.018 8 -0.030 

5 T/R 115.7 139.2 4.751 4.936 0.185 9 -0.028 

6 T/R 72.0 91.7 4.277 4.519 0.242 10 -0.018 

8 T/R 151.1 133.2 5.018 4.892 -0.126 11 -0.011 

10 T/R 156.1 150.3 5.050 5.013 -0.038 12 -0.008 

13 0.005 

14 0.015 

  15 0.017 

  16 0.024 

  17 0.037 

18 0.051 

19 0.064 

20 0.071 

21 0.152 

22 0.152 

23 0.157 

24 0.159 

25 0.188 

26 0.192 

27 0.204 

28 0.208 

29 0.214 

30 0.216 

31 0.238 

32 0.249 

33 0.261 

34 0.295 

35 0.375 

36 0.432 
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