
 1

CHAPTER  5 
 

Relationships between variables 
 
 
In this chapter we will look at different sorts of relationships.  By considering the 

different sorts of measurement scales (see paragraph 2.1), we obtain the 

following relationships between combinations of the measurement scales: 

 Linear relationships between two continuous (interval / ratio scaled) 

variables; 

 Linear relationships between one continuous variable and more than one 

independent continuous variable, which can be ordinal or dichotomous; 

 Relationship between a continuous  and a dichotomous variable; 

 Relationship between two dichotomous variables; 

 Relationship between two nominal variables. 

 

 

5.1 Effect size of linear relationships between two continuous  

        variables 

 

The Pearson Product moment correlation coefficient, xy , between the 

continuous  variables x  and y  obtained from population elements, is a measure 

of the linear relationship between x  and y .  The index xy  is dimensionless and 

takes on values between -1 and 1, where the values 1 and -1 indicate a perfect 

linear relationship and perfect inverse linear relationship between x  and y . 

When 0xy   it means that there is no linear relationship.   The effect size-index 

does not depend on measurement units and so Cohen (1969, 1977, 1988) 

recommends xy  (abbreviated by  ) as the effect size-index. Since ,y xz z  

with xz  and yz  the standard scores of x and y,   can be considered as the 
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number of standard deviation units that y increases as x increases one standard 

deviation unit. 

 

Example 5.1 (Rothmann et.al, 2000a): 

As in Example B, Chapter 3, the MBTI is also applied to pre-graduate pharmacy 

students at a university in order to determine the relationship between academic 

achievement and personality preference scores.  Table 5.1 displays the results of 

the correlation between academic achievement and E/I preference scores. It is 

clear from this table that the effect sizes of linear relationships   , especially in 

males, decreases in their 2nd and 3rd years, but increases sharply after that.  

The relationships are mostly far from perfect  1   and are actually weak 

relationships  0   close to . 

 

Table 5.1 

Correlations between academic achievement and E/I – preference scores 

 

Academic year 

                                        1                    2                    3                    4      

  (males)                      0,23               0,13              -0,05               0,47 

  (females)                   0,24               0,15               0,20               0,34 

                                                                                                                           

 

When random samples are drawn from a population,   can be estimated by the 

sample correlation coefficient r .  This estimation is unfortunately biased for  , 

with the bias approximately equal to  21
2 1 / n   , which always lies between 

-0,2/n  and 0,2/n  (see Steyn, 2002).  This means that, for large samples, r  is 

an unbiased estimator, but for small n , r  underestimates positive   values and 

overestimates negative   values. Grissom & Kim (2005: 72) give the 

approximate unbiased estimator for    as: 
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r r
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
 


                                                      (5.1) 

 

 

Example 5.2 (Steyn, 2002):   

The inter-correlations between 6 aptitude scores of a random sample of 112 

people is summarized in Table 5.2. 

 

With the exception of the correlation of 0,184 between maze navigation ability 

and reading comprehension, all of the correlations were statistically significant at 

a 5% level.  This only means that the correlations can be considered to be non-

zero.  The estimated effect sizes, r ,  are, on average, no more than 0,2/112 = 

0,0018 smaller than the population-effect sizes  , and thus reasonably accurate 

estimations.  According to (5.1) the approximate unbiased estimation of the 

correlation between Non-verbal intelligence and Picture completion is::  

20,466(1 0, 466 )
ˆ 0,466 0,466 0,0017 0, 467.

2(112 3)
r


    


 

 

 

Table 5.2 

Correlation coefficient of aptitude test scores 

      Skill                                    1                  2               3                5              6 

1. Non-verbal intelligence 

2. Picture completion            0,466** 

3. Block design                     0,552**         0,572** 

4. Maze navigation               0,340*          0,193         0,445** 

5. Reading comprehension   0,576**         0,263*        0,354*      0,184 

6. Vocabulary                        0,510**         0,239*        0,356*      0,219*    0,794** 

*  Medium effect.    ** Large effect 
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5.1.1   Guideline values for correlation effect size indices 

 

If the correlations are used as effect sizes, the question must once again be 

asked: “How large must these values be before they indicate an important 

relationship?”  Cohen (1969, 1977, 1988) proposes the following guideline 

values: 

 

 Small effect:          0 1,   

 Medium effect:     0 3,   

 Large effect:         0 5,   .  

 

He motivates these values briefly as follows: 

(a) Small effect:  0 1,   is a small correlation and means that only 1% 

(i.e., 2 2100 100 0 1,   ) of x ‘s variance is explained by y . 

(b) Medium effect: 0 3,   is a correlation which is typically found in 

behavioural sciences (see e.g., Example 5.1).  These relationships are 

observable by inspection (they can be “eye-balled”).  In psychometric 

tests’ determination of validity using a criterion, one expects to find 

correlations between 0 and 0,6, with the majority of them lower than 

0,3 (this follows from a statement made by Guilford (1965: 146). 

(c) Large effect:  0 5,   means that x  explains 25% of y ‘s variance, so 

that x  and y  are clearly linearly related.  According to a statement 

made by Ghiselli (1964: 61), 0,5 is a practical upper-bound for 

correlations obtained for validity calculations, which does not drastically 

differ from Guilford’s 0,6 discussed above.  While correlations between 

IQ or other similar tests concerning scholastic achievement vary about 

0,5, correlations between personality measures and comparable 

criteria are more likely to vary about 0,3 (which usually indicates a 

medium effect). 
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Feinstein (1999: 2569) provides different guidelines than those provided by 

Cohen. His reasoning is as follows: In a typical regression context with response 

variable y and predictor variable x, many data-analysts (such as Fleiss, 1981: 60 

and Burnand et al., 1990) do not agree that x effectively explains the variation in 

y unless the percentage of variation accounted for by x exceeds 10%. This 

means that we need r2 0,1  or approximately that r 0,3.   

 

In paragraph 5.3.1 we want to reconcile these effect size indices with the 

standardized difference   in order to provide a further motivation for the 

guideline values. 

 

In Table 5.2 the medium and large effects are highlighted.  Note that the 

guidelines are not rigidly applied, but are rather used to indicate a “region” for 

classification.  For this reason 0,466 is taken as a large effect and 0,239 and 

0,354 are taken as medium effects, since they are respectively close to 0,5 and 

0,3. 

 

5.1.2    Confidence intervals for correlation effect sizes 

 

Under the assumption that the x  and y  form a bivariate normal distribution with 

correlation coefficient  , then the statistic  

                                1 1

2 1

r
z r n

r

    
                                                              (5.2) 

has an approximate normal distributed with mean  z   and variance  1 3/ n  , 

where n  is the size of a random sample and r  is the sample correlation 

coefficient (see Snedecor & Cochran, 1980: 186). 

 

The   100 1 %  CI for  z   has the following boundaries  

                          2 3L /z z r z / n      
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                          2 3U /z z r z / n                                                          (5.3) 

The following result can then be derived from (5.2) 

                      
 

 

2

2

1

1

z r

z r

e
r

e





     ,                                                                         (5.4) 

and then lower and upper bounds for the  100 1- % CI  for    are: 

 

                           2 2
1 1L Lz z

e / eL
      

and                                                                 (5.5) 

                      
   2 2

1 1U U
U

z z
e / e

 
   

   
   
   

 .                                                      

 

Example 5.3:   

In Example 5.2 the 95% CI of the correlation between Non-verbal intelligence 

and Picture completion is calculated as follows: 

                                

   1 1
2 2

1 0 466
0 466 2 745 0 505

1 0 466

,
z , n n , ,

,

     
 

  0 505 1 96 112 3 0 505 0 188 0 317Lz , , / , , ,        

                     0 505 0 188 0 693Uz , , ,     

                   
   
   

2 0 317 2 0 3171 1

1,885 -1 1 885 1 0 307

, ,
L e / e

    = / , , .

    

 
 

                          2 0 693 2 0 6931 1 3 999 1 3 999 1 0 600, ,
U e / e , / , ,          

This suggests that the population effect size index for the linear relationship 

between the aptitude scores mentioned can be as small as 0,307 (medium 

effect), but as large as 0,600 (large effect), with a 95% probability. 

 

Note that the CI is not symmetric about the estimated value 0,466– which is 

different from the CI’s for standardized differences.                                             
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     5.1.3  Counternull values for correlation   

 

Because z(r) has an approximate normal distribution with mean z(  ) and 

variance  1/(n-3), the counternull value of z(r) is: 

                                            
2

2

1
.

1






counternull

counternull

z

conternull z

e
r

e
 

Therefore, because the distribution of r is not symmetric and the variance is a 

function of r, we make use of Fisher’s z-transformation which has a symmetric 

distribution with variance independent of r. The back-transformation of 2z(r) 

produces the required counter null value for r. 

 

Example 5.3 (continued) 

With r = 0,466 and z(r) = 0,505 the null-counternull value of 

2 0,505 1,1  counternullz  is 

                                          
2×1,1

counternull 2×1,1

e -1 9, 03 -1
r = = = 0,80

e +1 9, 03 +1
.  

This means that for r = 0,466 (p < 0,01) the correlation   could just as easily be 

as large as 0,8 as 0 and that the null-counternull interval (0,0 ; 0,8) can be 

interpreted as a 99% CI (i.e., 1 1 0,01 0,99    ) for   .                          

 

 

5.1.4   Modification of correlation for reliability 

 

Suppose that the measurement x  can be written as xx T e  , where T  is the 

true score or measurement and xe  is an error term.  Similarly, y  can be written 

as yy U e  .  The reliability of x  is defined as  

            
 
 xx

Var T

Var x
    , from which follows:     xxVar T Var x  

and for y  as 
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 
 yy

Var U

Var y
  , from which follows:    yyVar U Var y . 

This means that if the errors xe  and ye  are small relative to T  and U , then xx  

and yy  will  be close to 1.  Also, if the errors are very large, the reliability’s value 

will be close to zero.  For sample measurements, the values xx  and yy  can be 

estimated by xxr  and yyr  (see Steyn, 2004). If xx  is the population correlation 

and xyr  is the sample correlation between x  and y , then, according to Hunter & 

Schmidt, (2004: 96), the correlation between the true scores T  and U  can be 

given by 

 

xy
TU

xx yy xx yy

Kov(T ,U ) Kov( x, y )

Var(T ) Var(U ) Var( x ) Var( y )




   
                              (5.6) 

which can be estimated by 

               xy
TU

xx yy

r
r

r r
                    .                                                              (5.7) 

This modification is commonly known as the attenuation correction. 

 

Notes: 

 Note that TU  and TUr  are larger than xy  and xyr  . 

 If only y  contains an error term and x  is fixed, then  

               xy
TU

yy





    and    xy

TU

yy

r
r

r
                                                            (5.8) 

           because in this case 1xxr  , since x T . 

 The standard error of TU  and TUr  is larger than that of xy  and xyr  (Hunter 

& Schmidt, 2004: 96).  

 If we want to test the reliability of a certain item in a psychometric test and 

the test’s reliability is known, then the attenuation correction can be used 

as follows (Wanous en Hudy, 2001): 
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Let S denote the total count of items 1 2, ,...., kX X X  with reliability ss  and let the 

correlation between iX  and S be equal to iS . Because iX  and S measure the 

same underling property, we can assume that the correlation between the true 

iX  and S  observations is equal to 1, such that, from (5.6): 

                                                 1 ,iS

ii SS


 

  

And the reliability of iX  is given by: 

                                                   
2

,iS
ii

SS




                                                         (5.9) 

with estimator 

                                                     
2

iS
ii

SS

r
r

r
  .                                                        (5.10) 

In the case where the correlation between the two true observations of iX  and S 

is found to be less than 1,  ii  becomes larger. Values from (5.9) and (5.10) can 

thus be used as the lower bound for ii  and iir . 

 

 

 

Example 5.4: 

In Example A, Chapter 3, the inter-correlations of the before test scores of the 

BDI and POMS_A and POMS_D are given as follows: 

 

                                                              POMS_A  2x           POMS_D  3x  

                                   BDI  1x                    0,38                          0,49                                                  

                                   POMS_A  2x                                           0,73     

 

From de Klerk et al. (2004) it is known that 
1 1

0 84x xr , ,  
2 2

0 82x xr ,   and 
3 3

0 89x xr ,  
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are the “reliabilities” for BDI, POMS_A and POMS_D respectively.  Thus, the 

correlations between the true scores are: 

 

for BDI versus POMS_A               :             
0 38

0 45
0 84 0 82

TU

,
r ,

, ,
   

     BDI versus POMS_D                :             
0 49

0 57
0 84 0 89

TU

,
r ,

, ,
   

     POMS_A versus POMS_D      :             
0 73

1 17
0 82 0 89

TU

,
r ,

, ,
   

Because a correlation cannot be larger than 1, we set 1TUr   in the last case.  

  

 

 

5.2 Effect sizes of linear relationships between a continuous  

response variable and more than one predictor variable 

 

In multiple linear regression the linear relationship between a response variable 

y  and predictors 1 2 ux ,x ,...,x  is determined by the multiple correlation coefficient  

y.AR , where A  represents the set of predictor variables.  The square of the 

multiple correlation coefficient of y.AR , namely 2
y.AR , the multiple coefficient of 

determination is obtained, which describes the proportion variance of y  which is 

explained by the multiple regression-relationship 

                              1 1 2 2 u uŷ a b x b x ... b x       , i.e., 

                         
       2 2 2 22 1            y.A ˆ ˆR y y / y y y y / y y

, 

where y  is the mean of the y  variable.  This proportion variance can now serve 

as an effect size-index. 
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Usually 2
y.AR  is defined in terms of the random sample values y  and 1x , …, kx , 

and so, for the population-case, it will be denoted by 2
y.A . 

 

5.2.1 Semi-partial  2R  as an effect size-index 

 

Another statistic which can be used as an effect size index and is used 

extensively in multiple linear regression, is the proportion of y ‘s variance which 

is explained by a set of predictors B , apart from that explained by another set A.  

Cohen (1969, 1977, 1988) defines it as  

                                      2 2
y.A,B y.AR R ,                                                             (5.11) 

and it is commonly known as the squared semi-partial multiple correlation (see 

also Smithson, 2001).  This quantity can be interpreted as the contribution that 

the predictors in B  make to 2R  in a regression which includes all of the 

predictors of both A  and B .  It is called a semi-partial 2R  because A ‘s influence 

on B  is removed, but A ’s influence on y  is still considered.  The population 

analogue for semi- partial 2R  is denoted by 2 2
y.A,B y.A .   

 

5.2.2  Partial 2R  as an effect size-index 

 

If A ‘s influence on B  and y  is removed, then we obtain  

                                 
2 2

2
21

y.A,B y.A
yB.A

y.A

R R
R

R





,                                                     (5.12) 

the partial 2
.R  (Cohen, 1969, 1977, 1988). 

 

In this case the semi-partial  2R  expressed as a proportion of the portion of the 

variance of y  not explained by A  (i.e., 21 Ry.A ) is not provided. 
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5.2.3 The effect size index 2f  

 

Cohen (1969, 1977, 1988) defines the index 2
B Ff PV / PV , which is simply the 

ratio of the PV ' s , i.e., it is the ratio of the proportion variance of y  explained by 

some source B , to the proportion variance, FPV , of error or residual variance.  It 

can also be seen as the signal-noise ratio in a multiple regression context.  When 

we only make use of the set of predictors A , the statistic is as follows 

                                          2 2 21y.A y.Af R / R                                               (5.13) 

 

The proportion variances explained, namely 2
y.AR , 2 2

y.A,B y.AR R  and 2
yB.AR , are all 

easily interpreted because they all lie between 0 and 1, i.e., as these values 

become larger, it becomes clear that the variables contained within the multiple 

regression model are more capable of explaining the variance, or information, 

contained within y  than those variables which were excluded from the model. 

For these reasons, the proportion variances mentioned serve as better effect size 

indices than 2f , and so we will not concern ourselves with 2f  any further. 

 

5.2.4 Guideline values for proportion variance 

 

The statistic 2
y.AR  is a generalization of 2

x,yr  and the parameter 2
y.A  is a 

generalization of 2
xy  , consequently sensible guideline values are: 

 Small effect:  2 0,01,y.A   or 0,1y.A ,   which was a small effect for xy .  

This means that only 1% of y ‘s variance is explained by the regression 

based on the predictors in the set A. 
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 Medium effect:  2 0,1,y.A   or 0,317y.A ,   which is roughly a medium 

effect when considering xy .  In this case 10% of y ‘s variance is 

explained. Feinstein (1999: 2569) provides different cut-off points for a  

“significant” effect. 

 Large effect:      2 0, 25,y.A   or 0,5,| |y.A    which would have been 

considered large for xy . 

 

Example 5.5  (Smithson, 2001: 616): 

Suppose that the number of visits to professional health services  y  is predicted 

from measures of psychological health ( 1x ), physical health ( 2x ) and stress level 

 3x  by making use of a multiple linear regression.  Let  1A x  and 

 2 3B x ,x .  A sample of 465 people is used to fit the multiple linear regression 

model, and it produces the following results: 

                            2 2
1yx y.Ar R   0,1261, while 2

y.A,BR   0,3768. 

The proportion variance of y  explained by 1x  is 0,1261, which indicates a 

medium effect, while 1x , 2x  and 3x  together explain 0,3768 of the variance. This 

can be considered a large effect. 

 

The semi partial 2R  is 

                       2 2
y.A,B y.AR R   0,3768 – 0,1261 = 0,2507, 

so that the proportion variance of y  explained by 2x  and 3x  without 1x  being 

considered, has a large effect. 

 

Finally the partial  2R  of y  with 2x  and 3x ,  when 1x ‘s influence is removed, is: 

                    2
yB.AR   0,2507/(1 – 0,1261) = 0,2869, 

which also indicates a large effect.                          
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5.2.5 Point and interval estimation of proportion variance (Smithson, 2001) 

 

If 2
y.AR  is used to estimate 2

y.Aρ , then it is positively biased for small samples.  An 

unbiased estimator is the modified 2R , defined as:  

                                                2 21      
 

2
a

u
R R R

v
                                    (5.14) 

where 2 2 y.AR R , u is the number of predictors in A , and 1v n u   . The test 

statistic to test the null hypothesis 2
0 0y.AH : ρ , is the F- statistic defined as 

                     
2

21



y.A

y.A

R / u
F u,v

R / v
  ,                                                               (5.15) 

and if 0H  is not necessarily true, and the population distribution of y (given the 

predictors in A) is normal, then  F u,v  follows a non-central F-distribution with 

non-centrality parameter 

                   
2

2
1y.A

y.A

ρ
ncp u v

1 ρ

 
     

  .                                                        (5.16) 

 

Similarly to the methods discussed in paragraph 4.1.2, an exact  100 1 α % CI 

for ncp  can be determined by making use of computer software packages where 

the only input required for these programs are the values u , v ,  F u,v  (defined in 

(5.15)) and α .  From this output, and the help of equation (5.16), a CI for 2
y.Aρ  

can be determined with boundaries  2
y.Aρ L  and  2

y.Aρ U . 

 

This SAS-program (VI_R2)  can be downloaded from this manual’s webpage. 
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Example 5.6: 

The unbiased estimator for 2
y.A,Bρ  in Example 5.5 is: 

                  2 3
0,3768 - 1- 0,3768

465 - 3-1
aR  

                      = 0,3768 - 0,0041 

                         0,3727,   

while the 95% CI for 2
y.A,Bρ ,  is (0,308; 0,434) is and the input to the computer 

software package is:    0,3768/3
3 461 3,461 = = 92,9

0,6232/461
 u , v , F  and 

0,05α . 

 

Since the sample was large enough, the 2
aR ‘s value was, for practical purposes, 

the same as 2
y.AR .  Further, this proportion variance is a large effect because 

even the lower bound of the CI lies comfortably above 0,25.    

 

5.2.6 Confidence intervals for partial 2ρ  

 

From Smithson (2001) and Cohen (1969, 1977, 1988) it follows that the sets A 

and B consist of w and u predictors respectively. The F -statistic for the  partial  

2R  is then given by: 

                        
2

21-

yB.A

yB.A

R / u
F u,v ,

R / v
                                                              (5.17) 

with    v n w u 1. 

 

Under the normality assumption, the statistic  F u,v  follows a non-central F -

distribution with non-centrality parameter: 
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                                
2

2
1y.B.A

yB.A

ρ
ncp u v

1 ρ
  


 .                                               (5.18) 

This is because the form of both  F u,v  and ncp  are the same as the statistics 

in equations (5.15) and (5.16). As before, computer packages can be used. The 

computer software program VI_R2, and the SAS-program VI_R2pars are then 

used with inputs F, u, w  and n. 

 

 

 

Example 5.7:   

From the results of Example 5.5 it follows that 2 1 465 -1- 2 -1 = 461u ,w , v    

and 

                 0,2869/2
F 2;461 92,74

0,2869)/461(1
 


. 

With these values as inputs, Smithson (2001) constructed the following 90% CI 

for 2
y.B.Aρ : (0,2298; 0,3376).  This interval indicates a large effect.                 

 

 

5.3 Effect sizes of the relationship between a continuous and a 

dichotomous variable 

 

If a linear relationship between a continuous variable and a dichotomous variable 

has to be determined, the Pearson Product moment correlation coefficient can be 

calculated, which, in this situation, corresponds to the point-biserial correlation, 

denoted by pbr .  The population analogue is denoted by pbρ .  As in paragraph 

5.1, pbr  and pbρ  can be used as effect size indices.  Guideline values similar to 

those used for xyr  and xyρ  are also applicable here.  Cohen (1969, 1977, 1988) 

notes that if x  and y  are bivariate normally distributed with correlation xyρ  and if 

x  can be made into a dichotomous variable by splitting the values into two 
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separate halves (concentrating on the median values of each half, with point-

biserial correlation pbρ ) then: 

                      xy pbρ 1,253ρ .                                                                         (5.19)  

This means that pbρ  is almost 25% smaller than xyρ  using the same data that 

was dichotomized.  Consequently, Cohen’s guideline values of 0,1; 0,3 and 0,5 

can be similarly adapted. 

 

 

 

5.3.1   Relationship between a continuous variable and group membership of two 

groups 

 

If y  has measurements on an interval/ratio scale (e.g., IQ, blood pressure, etc.) 

and x  assumes only 2 values (e.g.,1 or 2) depending on the group membership 

of the y -variable measurement.  Then, in terms of δ  (described in equation in 

(4.2) (Cohen, 1969, 1977, 1988)) we have that: 

                        
2 1

pb
δ

ρ
δ /( pq )




,                                                             (5.20) 

where p is the proportion of elements (e.g., people) from the total number of 

elements in both populations that belong to the first population, while 1 q p  

represents the remaining proportion of elements.  

In the case where the two populations have equal numbers of elements, it follows 
from (5.20) that the point-biserial correlation is: 
 

                                     
2 4

pb







, 

 
hence  

                                      
2

1

2 1

pb

pb








.                                                        (5.21) 
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The relationship between the probability of misclassification MKP  en pbρ  follows 

from (4.39) en (5.21): 

                        2 2
1

1

 
    
  

pb
MC

pb

P U P Z



.                                            (5.22) 

 
The proportion misclassification is given in (4.39) as a function of    and in 

(5.22) as a function of  pb . 

 

 

Formulas (5.20) and (5.21) allow us to convert δ -values to xyρ -values and vice 

versa. 

 

Table 5.3 expresses the values of δ  in terms of pbρ  and xyρ  , and  provides 

guideline values for the former when we have 1
2 p q . 

 

 

 

Table 5.3 

Effect size             δ                  pbρ                     xyρ               Guideline values xyρ   

Small                       0,2                 0,100               0,125                        0,1 

Medium                   0,5                 0,243               0,304                        0,3 

Large                      0,8                 0,371               0,465                        0,5 

 

It is clear that the recommended guideline values for xyρ  naturally agree with the 

corresponding guideline values of δ  as suggested by Cohen (see paragraph 

4.5).  Cohen’s motivation concerning his choices of “small”, “medium” and “large” 

in paragraph 4.5 serves to complement the motivation stated in paragraph 5.12. 
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An estimator for pbρ  
can be obtained from a random sample using the following 

expression provided by Kline (2004a:115): 

                               

 


 
    

 

pb

2 1 2
1 2

1 2

δ̂
ρ̂

n n
δ̂ n n 2

n n

                               (5.23) 

where δ̂  is the estimator of δ  from (4.3). 

 

In terms of the t-value of the t-test for two independent samples becomes: 

                               
2

1 2 2


  
pb

t
ρ̂

t n n
                                                    (5.24) 

If one makes use of large samples of roughly the same sizes and variances, then 

MCP  is approximately the p-value of 
2

ˆ

ˆ1

pb

pb




    , i.e. :   

                    2 2

ˆ1ˆ ˆ1
2 ˆ1

               

pb
MC

pb

P U P Z d P Z



 .                            (5.25) 

Ozer (1985) provides an alternative method to estimate MCP  for equally sized 

samples:   
 
If the dependent variable is dichotomised by dividing it into two equal halves 
(above and below the median) then the following 2 x 2 frequency table can be 
created: 
 
 
 
                                  Below Me                Above Me 
Population 
A                                      a                               n-a                   n 
 
B                                     n-a                              a                     n 
                                        
                                         n                                n                    2n 
 
The proportion of misclassifications of the dichotomised dependent variable is: 

                                   
   1 1

2

   
   MC

n a n a n a a
P

n n n
  .                         (5.26)           
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The phi-coefficient for the 2 x 2 – frequency table (see (5.41)) is, in this case: 
 

                                
 22 2

2

2 2
1.

. . .

  
   

a n a na n a

n nn n n n
                                (5.27) 

 

Now, since  1 1 2
1 1 1 1 ,

2 2

a a

n n
         

 we find that  

                                 1
1

2
 MCP  .                                                              (5.28) 

 
By assuming that pb  , it follows that MCP  can also be determined by 

                                             1
1

2
 MC pbP  .                                               (5.29) 

 
and estimated by  

                                            1
ˆ1

2
 

MC pbP   .                                                (5.30) 

 
An extract from Table 2 of Ozer (1985) illustrates how well this approximation 
performs: 
 

                                       pb                MCP                  1
1

2 pb  

                                                         (from (5.17b))      
 
                    0                    0                 0,5                     0,5 
                    0,2                 0,1              0,46                   0,45 
                    0,63               0,3              0,38                   0,35 
                    1,15               0,5              0,28                   0,25 
                    1,96               0,7              0,16                   0,15  
                    4,13               0,9              0,02                   0,05 
                                       1,0               0                        0 
 

Counternull values for point-biserial correlation (see Rosenthal et.al, 2000: 15): 

 

Equation (5.18) states ̂  in terms of a point-biserial correlation ˆ
pb  if 1 2 :n n  

                                                  
2

ˆ
ˆ ,

ˆ 4
pb







                                                  (5.31)   

so that the counternull values of ˆ pb  are approximately: 
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                                       ,
2 2

ˆ ˆ2
ˆ .

ˆ ˆ4 4 1
 

 
pb counternull

 
 

                                 (5.32) 

From (5.19g) it follows that  

                                              
2

2
2

ˆ4ˆ ,
ˆ1
pb

pb








                                                        (5.33) 

If we substitute (5.33) in (5.32) we find that: 

                               

2 2

, 2 2

2

2

ˆ ˆ4 4
ˆ 1

ˆ ˆ1 1

ˆ2
              = .

ˆ1 3

 
 



pb pb
pb counternull

pb pb

pb

pb

 


 





                                      (5.34) 

Example 7b:   

For ˆ 0,4pb  , 

                                     , 2

2 0,4
ˆ 0,66

1 3 0, 4


 

 
pb counternull . 

This means that this point-biserial correlation has the same probability of being 

as large as 0,66 as it does of being 0.                                                                 

 

 

5.3.2    Modification for reliability 

        

From paragraph 5.1.4 it follows from (5.7) that b  and b
ˆ   can be modified to 

obtain the reliability of y  (which is denoted by yy or yyr ) as follows: 

             pb
b

yy





  and pb

b

yy

ˆ
ˆ

r


       .                                                          (5.35) 

From (5.21) and (5.23), the values   and ̂  can also be modified (see Baugh, 

2003 : 36-38): 

                      
21
b

b

b pq







                                                                     (5.36) 

and 
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  

1 2

2
1 2 1 21 2

b
b

b

ˆ n nˆ
ˆ n n n n







   
                                            (5.37) 

 

Example 5.8:   

From Example B in Chapter 3, we assume that the SDs  for students and 

lecturers on the E/I measurements are both equal to 25  . Also, according to 

Rothmann et.al. (2000b), the reliability varies between 0 84,  and 0 86, , so that 

                            
94 58 107 64

0 522
25

, ,
, 

    

and 

                   

 
2 2

0 522
0 155

1 10 522
0 9 0 1

pb

,
,

,pq , ,





   

  

 

              (where 
254

0 9
282

p ,     and   1 0 9 0 1q , ,   ).   Let 0 84yy ,  . 

Now we have that      
0 155

0 169
0 84

b

,
,

,
 

   . 

                 
2

0 169
0 572

1 0 169 0 9 0 1
b

,
,

, , ,
 

  
 

 

                                                                                                           

                         

5.3.3   Proportion variance attributed to the group membership of two populations 

 

While pbρ  and pbρ̂  can be used as effect size indices, in practice it is more 

sensible to make use of the square of this value.  This squared quantity is then 

the proportion variance of y  which can be attributed to the population group 

membership.  Instead of using 2
pbρ  and 2

pbρ̂ , it is often even more useful to use 

the notation 2η  and 2η̂ .  The reason for the use of 2η  is because, in the case of 

k  populations, we defined it as 2 2 2
μ totη σ / σ , where 2

μσ  is the variance of the 
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values 1 2 kμ ,μ ,...,μ  and 2
totσ  is the variance of all k  populations together.  In the 

case of two equal sized populations with equal variances, we obtain the 

expressions  22
1 2

1

4μσ μ μ   and 2 2 2
tot μσ σ σ ,   so that from (5.20) with 

1

2
p q   it follows that: 

                                       
2

2 2
2 4

pb
δ

η ρ
δ

 


.                                                    (5.38) 

 

The value 
2

pb
ρ̂  in (5.23) and (5.24) is actually a biased estimator of  2 2

pbη ρ ,  

and so, to compensate for this, Hays (see Sheskin, 2000: 264) proposes the 

quantity known as omega-squared: 

                                     
2

2
2

1 2

1

1

t
ω̂

t n n




  
 .                                                 (5.39) 

 

In terms of δ̂  this estimator becomes: 

                                    

21 2

2 1 2

21 2
1 2

1 2

1

1

n n
δ̂

n n
ω̂

n n
δ̂ n n

n n





  



       .                                (5.40) 

The problem with  2̂   as an estimator is that it can be negative if |t| < 1.  

However, seeing as 2  is positive (per definition), the effect size in these case is 

usually assumed to be zero. Cases where |t| < 1 are always associated with a 

non-statistically significant difference in group means and we expect that 2  will 

be small. 
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Example 5.9: 

Consider Example B from Chapter 3.  Is there a practically significant difference 

between the mean preference score in E/I between students and lecturers?  

Assume equal standard deviations of 25σ ,   then  

          94,58 -107,64 25 = -0,522,δ /   and 

          2 2 2 1η δ / δ / pq ,    where 254/282 = 0,9p    and  q = 1- 0,9 = 0,1, so 

that we have 

         

  2 2 20,522 0,522 +1/ 0,9×0,1

0,272/11,384

    = 0,024.

η /

    =



 

The proportion variance of the E/I preference scores which is attributed to the 

two groups is only 0,024 . 

Note that because the population sizes are very different it has a large influence 

on the value of 2η .  In the case where the populations are equally large, 

1
=

2
p=q 

 
 

, then, for example: 

                       2 2 2 + 4 0,272/4,272 = 0,064η δ / δ            

                                                                                                                               □ 

 

5.3.4  Guideline values for proportion variance attributed to population 

         group membership 

 

The guideline values suggested by Cohen (1969, 1977, 1988) for standardized 

differences, i.e., δ ,  is given in paragraph 4.5.  Further, for correlations between 

two continuous variables, Cohen’s guideline values given in paragraph 5.1.2 can 

be used.  While in multiple linear regression, on the other hand, the guidelines 

are given in paragraph 5.2.4 for, among others, 2
y.Aρ .  Proportion variance can be 

attributed to the population group membership and so, given 2
pbρ  and its 
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estimator 2
pbρ̂ , defined in terms of δ  and δ̂  (see (5.17) and (5.18)).  The 

guidelines for δ  and δ̂  can also be used for 2
pbρ  and 2

pbρ̂ .  Using Table 5.3, we 

get: 

 

 Small effect:            2 0,01pb      ( 0, 2 0,1pbδ  ; ρ  ) 

 Medium effect:       2 0,06pbρ      ( 0,5 0, 243pb; ρδ   ) 

 Large effect:           2 0,14pbρ       ( 0,8 0,371pb; ρδ   ) . 

 

Notes: 

1. These are in fact the guideline values that Cohen suggests for 2η , but in 

the case where there are more than two populations.  In Chapter 6 we 

will discuss Cohen’s motivation for these choices.  In the present case 

2
pbρ  is actually not determined only through 2δ , but is also determined 

through the proportion p  of population elements which belong to one of 

the populations ( and q  is then calculated from p ).  Table 5.4 provides 

values for 2
pbρ  at selected values of δ  and p .   

2. From Table 5.4 it is clear that as p  becomes smaller, 2
pbρ  also becomes 

smaller.  In the extreme case where = 0,01p , then 2
pbρ  remains small or 

medium, according to the abovementioned guidelines.  (Example 5.9 

illustrates this nicely).  Since  1pq p p   is symmetric in p  around the 

value = 0,5p , the same values of 2
pbρ  are obtained for 

= 0,99; 0,95; ... 0,4.p   

 

 

 



 26

Table  5.4:  Values of 2
pbρ  

 p        
  0.01 0.05 0.1 0.15 0.2 0.3 0.4 0.5

0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.2 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01
0.3 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.02
0.4 0.00 0.01 0.01 0.02 0.02 0.03 0.04 0.04
0.5 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.06
0.6 0.00 0.02 0.03 0.04 0.05 0.07 0.08 0.08
0.7 0.00 0.02 0.04 0.06 0.07 0.09 0.11 0.11
0.8 0.01 0.03 0.05 0.08 0.09 0.12 0.13 0.14
0.9 0.01 0.04 0.07 0.09 0.11 0.15 0.16 0.17

1 0.01 0.05 0.08 0.11 0.14 0.17 0.19 0.20
1.1 0.01 0.05 0.10 0.13 0.16 0.20 0.23 0.23
1.2 0.01 0.06 0.11 0.16 0.19 0.23 0.26 0.26
1.3 0.02 0.07 0.13 0.18 0.21 0.26 0.29 0.30
1.4 0.02 0.09 0.15 0.20 0.24 0.29 0.32 0.33
1.5 0.02 0.10 0.17 0.22 0.26 0.32 0.35 0.36
1.6 0.02 0.11 0.19 0.25 0.29 0.35 0.38 0.39
1.7 0.03 0.12 0.21 0.27 0.32 0.38 0.41 0.42
1.8 0.03 0.13 0.23 0.29 0.34 0.40 0.44 0.45
1.9 0.03 0.15 0.25 0.32 0.37 0.43 0.46 0.47

2 0.04 0.16 0.26 0.34 0.39 0.46 0.49 0.50

 

3. The case where = 0,5p  agrees with the above guideline values, is 

where it is assumed that the populations are of equal size. 

4. Further, because 2
pbρ  is a function of δ , the assumption of equal 

standard deviations of the two populations has to be made.  This is 

because this assumption must be made in Example 5.9. 

5. Grissom and Kim (2005: 92-95) give three reasons why the usage of  pb  

is preferable to that of 2
pbρ  . 

6. Due to the restrictive assumptions made in 3 and 4 and what is 

mentioned in 5 above, it is recommended that, in the comparison of two 

population means, one should rather make use of one of the following 

effect size indices δ , aδ , 1 2 D, , , δ    and 'D  or one of their 

estimators. One can choose an appropriate index which will satisfy the 
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assumptions of the situation.  For this reason we will not spend further 

effort on the discussion of, for example, confidence intervals for 2
pbρ . 

 

 

5.4    Effect sizes for 2 x 2 - frequency tables 

 

When population or sample elements can be classified using to two dichotomous 

categorical variables, this data can be expressed in a 2   2 – frequency or 

contingency table (also called a two-way table) as illustrated in Table 5.5 (see 

Steyn, 2002 and Kline, 2004a:  146): 

 

Table 5.5 

The 2 x 2 frequency table of x and y  

 

                                           y  
                                     Category 1               Category 2                 Total 
 
x           Category 1             a                               b                            a +b  
             Category 2             c                               d                            c + d  
 
             Total                 a +c                           b + d                            n  
 
 
In this table, a , b , c  and d  represent the frequencies at each of the 4 

combinations of x  and y ‘s categories and n=a+b+c+d  represents the 

population or sample size (depending on whether we have sample or population 

data). 

 

5.4.1    Relationships between x and y 

 

The Pearson correlation coefficient between x  and y  (where each one can 

assume two values, e.g., 1 and 2) can be expressed in terms of the frequencies 

in Table 5.5 as follows: 
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    

ad-bc
φ= ,

a+b c d a c b d  
                                    (5.41) 

which is known as the phi-coefficient.  This coefficient has the same properties 

as xyρ  and xyr  and, as such, can be used as an effect size index.  Like xyρ  and 

xyr , the coefficient φ  can also be negative, which will be the case when bc>ad .  

The order of the categories 1 and 2 is usually arbitrarily chosen, (e.g.,the first 

category of x  is “male” and the second is “female”) and so, when possible, the 

frequency table can be constructed so that the larger frequencies at Category 1 

of both x  and y  occur with Category 2 of both x  and y .  This is constructed so 

that the table produces a positive φ . 

 

Cohen (1969, 1977, 1988) recommends, by referring to the guideline values for 

xyρ , the same values for φ , namely 

 Small effect:              0,1φ   

 Medium effect:         0,3φ   

 Large effect:             0,5φ  . 

 

5.4.2    Binomial Effect Size Display (Rosenthal et.al 2000: 17) 

 

To interpret the  - coefficient in terms of a 2 x 2 frequency table, the so-called 

BESD (“Binomial Effect Size Display”) is used.  For example, consider an 

experimental group and a control group, each of size 100, and suppose that of 

the 200 individuals in the study 100 showed improvements after a treatment and 

that the 2 x 2 table of results was given as follows: 
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                                                  Improvement         No improvement     Total 

                      Experimental           66                         34                          100 

    Groups 

                      Control                    34                         66                          100 

                      Total                      100                       100                          200 

 

We find that 
66 66 34 34

0,32.
100 100 100 100

   
 

  
 

In general the content of the 2 x 2 table is given by: 

 

100 0.5
2

r  
 

   100 0.5
2

r  
 

 

100 0.5
2

r  
 

   100 0.5
2

r  
 

 

 

where r  .  In this example r  = 0,32 so that 66% - 34% = 32%.  It thus provides 

the difference in improvement rates (66% vs 34%) if half of the population 

receives the treatment (belonging to the experimental group) and the other half 

does not receive the treatment (belonging to the control group).  The following 

table provides the improvement rates for values of r  : 
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Rate of improvement 

From                   To                   Effect 

r                                                                                          (Cohen, 1988)  

0,0                             0,5                        0,5 

0,1                             0,45                      0,55                 small 

0,2                             0,40                      0,60 

0,3                             0,35                      0,65                 medium 

0,4                             0,30                      0,70  

0,5                             0,25                      0,75                 large 

0,6                             0,20                      0,80 

0,7                             0,15                      0,85 

0,8                             0,10                      0,90 

0,9                             0,05                      0,95 

1,0                             0,00                      1,00 

 
In order to get an intuitive “feeling” for the φ -values in terms of frequency tables, 

Steyn (2002) provides the following examples, summarized in Table 5.6: 

 

Table 5.6 

Examples of 2 x 2 tables 

 

(a)    0 :φ    if the frequencies in 2 rows (or columns) are equal, e.g., 

 
                                            y  
                                           1                       2 
 
           x          1                 50                     50           100 
                       2                 25                     25             50 
 
                                          75                     75            150 
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(b)    0,1:φ   (small effect): 
 
                                            y  
                                           1                       2 
 
           x          1                 55                     45           100 
                       2                 45                     55           100 
 
                                         100                   100          200 
 
 
(c)    0,3 :φ   (medium effect): 
 
                                            y  
                                           1                       2 
 
           x          1                 65                     35           100 
                       2                 35                     65           100 
 
                                         100                   100          200 
 
(d)    = 0,5 :φ   (large effect): 
                                            y  
                                           1                       2 
 
           x          1                 75                     25           100 
                       2                 25                     75           100 
 
                                         100                   100          200 
 
(e)    1:φ    if the frequencies in any diagonal entry of the table is equal to 0 , 

e.g., 
 
                                            y  
                                           1                       2 
 
           x          1                 100                    0            100 
                       2                    0                   100          100 
 
                                         100                   100          200 
 
 
Table 5.6(e) is an example of a strict perfect relationship between x  and y  

(Smithson, 2000: 324).  This means that x  completely determines y  and vice 
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versa.  If an individual obtains a 1  for x , that person will also obtain a 1  for y , 

while everyone with a 2  for x  will also obtain a 2  for y . 

 

Now consider the following table: 

                                            y  
                                           1                       2 
 
           x          1                 100                    0            100 
                       2                   75                   25           100 
 
                                         175                    25           200 
 
This is an example a weak perfect relationship (Smithson, 2000: 324) in the 

sense that only category 1 of x  will completely determine the y  value, but 

category 2  cannot be used to determine y at all.  Alternatively, x  can be fully 

determined if 2y= .  In this case 0,38φ   which is a considerable decrease from 

1φ  .  This indicates that φ  is not an appropriate measure a weak perfect 

relationships.  We will show later that the “Odds ratio” is more appropriate for this 

purpose. 

 

Example 5.10: 

In Example C, Chapter 3, combines the last 3 Categories of smoking together, so 

that it forms a 2 x 2 - table: 

                             

                                      Coronary heart disease 

 
                                         Yes                No              Total 
       
Smoke                 Yes            78                59                  137 
                             No              42                61                  103 
 
                      Total        120              120                  240 
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With the goal of determining the relationship between coronary heart disease and 

smoking, the coefficient φ is calculated as follows 

                   
78×61- 59× 42 2280

   =
137×103×120×120 203198400

φ           = 0,16, 

which indicates a small effect. 

  

Suppose that the 240  employees are randomly chosen from all possible 

employees at a company.  In this case φ  would be estimated by the value 0,16 . 

                                                                                                                            □ 

 

In general, the sample value of φ , denoted φ̂ , can be used as an estimator of 

the population value of φ .  This estimator is asymptotically unbiased, but 

overestimates φ  for small samples by approximately 1
n

  (Johnson et.al, 

1995: 447). 

 
Note: 

Fleiss (1994) demonstrates the following problem with φ  as an effect size index, 

by making use of the following example.  Consider two studies where the relative 

frequencies for y  for a given x  is the same, but the relative frequencies of x   

differs: 

 

 

                                                                   y  

               Study                       +                                      -               Total 

                1     x       +              45                                 5                    50 
                                -              120                               30                  150   
 
                           Total            165                               35                   200 
              
                2     x       +               90                               10                   100 
                                -                80                               20                   100 
 
                           Total            170                              30                    200 
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In both studies for x  (+) the relative frequencies are 45/50 = 90/100 and 5/50 = 

10/100, and similarly for x  (-).  The relative frequencies for x  (+) are 50/200 and 

100/200 which differ – similarly for x  (-).   

 

The φ - coefficient is 0,11 and 0,14 for the two studies. 

 

This means that the φ  - coefficient is influenced by the degree which the 

categories of x  are represented in the data.  The same is also true for the y  - 

categories. 

 

For this reason φ̂  is a valid estimator if it is based on something other than a 

random sample.  For randomness, the marginal totals of the 2 x 2 – frequency 

table should appear in roughly the same ratios as that of the population.  Now, 

consider the following fictional frequency table obtained from Example 5.10, but 

where a random sample is drawn from the company instead of a stratified 

sample with an equal number of employees with and without heart disease: 

 

                                                     Coronary heart disease 

                                      Yes                       No                     Total 

      Smoke        Yes       26                       98                          124 

                            No     14                      102                          116 

                        Total      40                      200                          240 

 

This table is obtained from the 240 employees which are divided into 40 people 

with the heart disease (instead of 120) and by taking the number of smokers as 

one third of the original 78. Similarly, 59
120 200×  is approximately 98 rounded off to 

the nearest integer.  This table should be a realization of a random sample if one 

sixth (i.e., 40
240 ) of the employees have heart disease.  The value 0,119φ̂   is a 
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valid estimator for the population φ  - coefficient, while Example 5.10’s value of 

0,16φ̂  , based on the stratified sample is not a valid estimator. 

 

5.4.3  The counternull of the BESD   

 

The  -coefficient can be seen as a special case of a point-biserial correlation 

where the response variable (y) is dichotomous. We obtained a counternull value 

for the estimator ˆ
pb  in (15.19d) in terms of r  : 

                                      
2

2

1 3
counternull

r
r

r



.                                                (5.42)                                

For a BESD where r  , the counternull of a BESD is one with counternullr   .  In 

the above example with 0,32   we have 

                                    
2

2 0,32
0,56

1 3 0,32
counternullr


 

 
,  

So that the counternull BESD is: 

Group Improve Not improve Total 

Experimental   78 22 100 

Control 22 78 100 

Total   100 100 200 

 

This 2 x 2 – table is thus just as probable as the BESD where 0  , viz.: 

 

Group Improve Not improve Total 

Experimental   50 50 100 

Control 50 50 100 

Total   100 100 200 
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5.4.4    Confidence interval for φ  

 

For large samples Fleiss (1994) provides the variance of φ̂  as: 

                   
2

1 2
1 3

1
2 4

2 2φ̂
ˆ ˆ ˆ ˆVar φ φ φ 1 C φ C

n

  
      

   
,                               (5.43) 

where 

                   
  
    1

a b c d a c b d
C

a b c d a c b d

     


   
 

and 

                
 
  

 
  

2 2

2

     
 

   
a b c d a c b d

C
a b c d a c b d

 

 

The approximate  100 1- α %  CI for φ ‘s boundaries are thus: 

                   L α / 2ˆ ˆφ φ z Var φ                                                                

and                                                                                                            (5.44) 

                   U α / 2ˆ ˆφ φ z Var φ   . 

As an alternative, the exact CI can be determined by making use of the SAS-

program VI_w  for   as a special case of w discussed in paragraph 5.5.2. The 

inputs used are 2ˆ2X n  , n and df=1.                                        

 

Example 5.11:   

For Example 5.10  

                     

  

 

1

2

2

137 -103 120 -120
0

137×103×120×120

137 -103
0 = 1156/14111 = 0,082

137 103

 

 


C

C

 

               
2

2 21 0,16 3
1- 0,16 + 0,16 1+ ×0 - ×0,16 ×0,082

240 2 4

  
   

   
ˆVar φ  



 37

                          
1

= ×0,9728 = 0,00405
240

 

The 95%  CI’s boundaries are then: 

                     0,16 -1,96 0,00405 = 0,16 - 0,125 = 0,035Lφ   

                     0,16 + 0,125 = 0,285Uφ  . 

For the exact CI is the input  22 240 (0,16) 6,144X     , n=240 and df=1. 

This produces the 95% CI of (0,032 ; 0,287), which is very close to the 
approximate CI value. 
 

Thus, even with a large sample (like 240) the 95%  CI‘s boundaries are quite wide 

and the φ ‘s value vary in such a way that it indicates a small to medium effect.              

□ 

 

5.4.5  Probability measures from 2 x 2 frequency tables 

 

Suppose that the proportion of population elements in populations 1 and 2 are p  

and q  respectively.  Suppose that the response value ( y ) can only take on 

either a positive or negative value (e.g., ‘agree’ versus ‘disagree’; in case control 

studies in epidemiology ‘exposed’ versus ‘not exposed’; in intervention studies 

‘improves’ versus ‘does not improve’).  Let the probabilities (proportions) for 

positive responses be 1π  and 2π  for both populations.  The 2 x 2 frequency table 

then has the following form: 

 

Table 5.7  General 2 x 2 – table 

                                                  y  

                                              Positive              Negative            Total 

x              Population 1            1pNπ                1pN 1 π           pN  

                                 2            2qNπ                2qN 1 π           qN  

                Total                     Nπ                  N 1 π               N  
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The expression 1 2 π pπ qπ  represents the probability of a positive response 

for both populations, while N  is the total number of elements in both populations. 

 

By making use of Table 5.7, we can discuss the following three comparative 

measures of risk or rate: 

  Difference  in proportion of the positive responses, 1 2π π . 

 Ratio of the proportion of the positive responses, 1 2π / π , known as the 

relative risk or rate or risk ratio. 

 Ratio of the odds, or odds ratio  

                          
 
 

 
 

1 1 1 2

2 2 2 1

 
 

 
π / 1 π π / 1 π

ω
π / 1 π π / 1 π

. 

Measures of rates is a more general term, because we tend to only use the term 

measure of risk when the ‘positive’ response represents some undesirable result 

such as ‘exposed’, ‘identified’, ‘sick’,  or ‘dead’.   

 

5.4.6  Difference  in proportions 

 

As in the case of the mean, in this situation there are two types of effect size 

indices that can be used.  First, the standardized differences in proportions can 

be used, and second, one can use the relationship between the response y  and 

the population grouping variable, x . 

 

(a) Standardized differences in proportions:  

Let 

                   
1,  if  population  is positive

0, otherwise,i

i
y

 


 


 

then iy ‘s population mean is i iμ π  and its population variance is 

 2 1 i i iσ π π . This means that, from (4.21) with 1W p  and 2W q  it follows 

that: 



 39

                   
   

1 2

1 1 2 2




  
g

π π
δ

pπ 1 π qπ 1 π
     .                                            (5.45) 

If equal population variances are assumed, then each of the variances with 

 π 1 π  (recall that 1 2 π pπ qπ ) can be replaced. This yields the proportion 

analogue of δ : 

                  
 

1 2




π π
δ

π 1 π
                                                                              (5.46) 

Starting with population 1 as the reference point (say the control population), the 

effect size-index is: 

                    1 2 1 11 π π / π 1 π                                                                (5.47) 

The estimators g
ˆ ˆδ , δ  and 1  can be obtained by replacing the proportions 1π  

and 2π  with the sample proportions 1p  and 2p , for the two populations. 

 

The problem with all three of the above indices is that the standard deviation 

value depends on 1π  and 2π . 

 

Cohen (1969, 1977, 1988) therefore proposes the following effect size index: 

                           21ψ 2 arc sin π arc sin π                                          (5.48) 

Note that for  arc sin x  the angle is expressed in radians  a , such that 

 sin a x.  

 

Notes: 

 The function  arc sin x  is also often expressed as  1sin x  on 

calculators. 

 Radians can be converted to degrees using the relationship 

×6,283,
360

θ
a   where θ  is the angle in degrees. 
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 If 1π 0  or 2 0π ,  then let   1 4arc sin / n  instead of  0arc sin . 

 If 1π  or 2π 1,  use 1,571 -   1 4bg sin / n  instead of  1arc sin . 

 The standard deviation of ψ  is independent of 1π  and 2π , so that by 

comparison of means the scale remains constant.  For example, for 

1 0,65π   and 2 0,35π   the value ψ  is 0,61ψ  , while for 1 0,5π   and 

2 0,2π   it is 0,64ψ  .  This means that a difference of 0,3  in proportions 

roughly equates into a difference of 0,6  on the ψ -scale.  For the index 

gδ , the corresponding values would have been 0,63  and 0,50 , if it was 

assumed that 
1

2
p q  .  

 
 Note that for a BESD-2x2-table (see previous paragraph), all the marginal 

totals are 100 and  1 2π π  has the value of  . Therefore r = 1 2π π , so 

that  the BESD can be determined from the difference in the proportions.  

 

 

If random samples are drawn from the populations, the sample estimates 1p  and 

2p  will serve as estimators for the proportions, and the following estimator can 

be used: 

                                     1 22 ψ̂ arc sin p arc sin p                              (5.49) 

For large samples, ψ̂  is normally distributed with mean ψ  and variance 

  1 2
1 2

1 2

1
n n

1 / n / n
n n


  . This means that boundaries of the  100 1 α %  CI can 

be expressed as: 

                           1 2

1 2
L α / 2

n n
ˆψ ψ z

n n


   

and                                                                                                                  (5.50) 
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                           1 2

1 2
U α / 2

n n
ˆψ ψ z

n n


  . 

Counternull value of ̂  : 

Since ̂  is normally distributed with variance independent of  , it follows from 

paragraph 4.1 that, in the same way as in the case of  d, die counternull value for 

̂  is given by 2̂ . 

 

Example 5.12: 

Consider Example 5.10 and denote the population of coronary heart disease 

sufferers as population 1 and the population without the disease as population 2.  

Then 1
78

= 0,65
120

π   2 0,49π  , 
120

= 0,5
240

p q.   

                         

0,65 - 0,49

0,5×0,65×0,35 + 0,5×0,49×0,51

0,17 0,17
= = 0,348

0,4890,1138 + 0,1250

gδ

    = .



 

To determine δ , we calculate 
137

= 0,57
240

π   so that 

0,17/ 0,57×0,43 = 0,17/0,495 = 0,343δ  , which, for all practical purposes, is 

the same as gδ . 

                               2 0,65 0,49ψ arc sin arc sin   

                               = 2 0,9377 - 0,7754 = 0,325 ,  

which produces almost the same effect size. 

 

If we assume that two random samples are drawn from populations 1 and 2, then 

an approximate 95% CI for ψ ‘s has the following boundaries: 
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U

120 +120
,325 -1,96

120×120
0,325 -1,96×0,129 = 0,072

= 0,325 + 0,253 = 0,578

Lψ 0

     =

ψ



 

The population value ψ  can thus be as low as 0,072  but also as high as 0,578  

(with probability 95%).                                                    

 

5.4.7  Guideline values for differences in proportions 

 

From Example 5.12 it seems as though all three effect size-indices gδ , δ  and ψ  

produce almost identical values.  This is true in practice for all combinations of 

the values: 

                                     1 20,1 0,9π ,π      and    0,25 0,5p  . 

Using the guidelines based on the mean discussed for δ , Cohen (1969, 1977, 

1988) once again proposes the same guidelines: 

 

Small effect:  ψ = 0, 2.gδ , δ ,   These guideline values are used if  1 2π ;π  forms 

the following pairs:           0,005; 0,1 , 0, 2; 0, 29 , 0, 4; 0,5 , 0,6; 0,7 , 0,8; 0,87  and 

 0,9; 0,95 .  

Medium effect: ψ = 0,5.gδ , δ ,  These values are used if  1 2π ,π  form the pairs:  

         0,05; 0, 21 , 0, 2; 0, 43 , 0, 4; 0,65 , 0,6; 0,82 , 0,8; 0,96 .  

Large effect:  ψ = 0,8.gδ , δ ,  These values are used if  1 2π ,π  form the pairs:  

         0,05; 0,34 , 0, 2; 0,58 , 0, 4; 0,78 , 0,6; 0,92 , 0,8; 0,996 . 

 

Burnand et. al.(1990) proposes the following guidelines which were determined 

empirically from a survey of 392 articles in the medical literature: 

 Significant : δ  = 0,28 

 Substantially  significant : δ  = 0,35 
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 Highly significant : δ  = 0,65. 

 

5.4.8    Rate or Risk ratios 

 

The rate ratio is the ratio of the probabilities 1π  and 2π  as defined in paragraph 

5.4.5.  If population 1 is the control population and population 2 is the treatment  

population, then 1 2π / π  is the ratio of the proportion of positive response of the 

control individuals relative to the treated individuals.  If the term ‘positive’ refers to 

the event of occurrence of a disease or death, then it is known as a risk ratio.  If 

1 2 1π / π  , then it means that the risk is larger for the control group than it is for 

the treatment group.  If definitions of population 1 and 2 are reversed, then 

1 2 1π / π   would be more beneficial. 

 

The calculation of 1 2π / π  in terms of the cell-frequencies of a 2 x 2- frequency 

table (Table 5.5) is: 

                         
 
 1 2

a / a b
π / π

c / c d





                                                                (5.51) 

If one is working with sample data, then the estimated rate ratio is 1 2p / p , where 

1p  and 2p  are the sample proportions based on samples drawn from the two 

populations. 

 

One disadvantage of the rate ratio is that it can become very large if 2π  becomes 

very small relative to 1π . 

 For this reason it cannot be used as an effect size index in the same manner as 

φ  or 2η , both of which lie between 0 and 1. However, it should rather be used by 

looking how far it lies from 1, because 1 2 = 1π / π  implies that there is no 

difference between the rates or risks.  The natural logarithm of 1 2π / π , i.e., 

     1 2 1 2n π / π n π n π     will serve as a more effect size-index, since it can 



 44

assume any value on the number line and the zero value corresponds to no 

differences in the rates or risks.  

 

According to Fleiss (1994) and Kline (2004a), the natural logarithm  1 2n p / p  

follows as approximate normal distribution if the sample is large.  Further, we find 

that 

                      1 2
2

1 1 1 2

1 1
1

p p
Var n p / p ,

n p n p

 
                                               (5.52) 

so that the  100 1 α %  CI for  1 2n π / π  has lower and upper boundaries given 

by the following expression:  

                   1 2
1 2

1 1 2 2

1 1
α

2

p p
n p / p z

n p n p

 
                                                    (5.53) 

The CI for the quantity 1 2π / π  then has the following lower and upper boundaries: 

                   L
1 2 L
π π e  and  1 2

U
U

π π e                                                    (5.54) 

 

Example 5.13: 

Continuing with Example 5.6, let population 1 denote individuals with coronary 

heart disease and population 2 denote individuals without the disease, then the 

probability that an individual from the respective populations smoke are 

1
78

= 0,65
120

π   and 2
59

= 0,49
120

π  . 

Consequently, 1 2 0,65/0,49 = 1,327π / π  , which means that an individual with 

coronary heart disease is 1,3 more likely to smoke than an individual without the 

disease.  Smoking might thus be seen as risk factor for the disease. 

 

If the 120 individuals in each group are considered to be random samples, then 

1 0,65p   and 2 0,49p   and 1 2 1,327p / p   are estimates of the rate ratio, 

while 

                         1 2 1,327 0,283n p / p n    
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 1 2
1- 0,65 1- 0,49

120 0,65 120×0,49

0,00449 + 0,00864

                            = 0,0131

Var n p / p

                           = 

    


 

the 95% CI for  1 2n π π  is then: 

                        

 

   0,283 ±1,96 0,0131

= 0,283 ± 0,225

= 0,058;0,508

 

  0,058
2 1,060=

L
π / π e   ,      0,508

1 2 1,661=
U

π / π e . 

 

This means that the quantity 1 2π / π  can be as low as 1,06 and as high as 1,661 

with 95% probability.  There is thus a sign of a risk. 

                                                                                                                              

 

 Odds ratio: 

 

We will begin by first defining the odds.  In terms of Table 5.7, the odds of 

population 1 is  1 1π / 1 π  and for population 2 it is  2 2π / 1 π .  It thus denotes 

the ratio of the probability of y  yielding a positive result versus probability of y  

yielding a negative result. 

 

Example 5.14: 

In Example 5.10, the odds of a person with coronary heart disease is 

          
78 42 78

= = 1,857,
120 120 42

 

while, the odds of a person without the disease is  

          
61

= 0,967
120

59
120

. 

For individuals with the heart disease, there are approximately 1,9 people who 
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smoke for each one that does not smoke, while for the people without heart 

disease it is closer to 1.                           □ 

 

If the two populations’ odds are to be compared, then it can be done by looking 

at the ratio of the odds. 

 

This ratio is commonly known as the odds ratio, or simply OR. It is expressed as: 

                       
 
 

 
 

1 1 1 2

2 2 2 1

1 1

1 1

π / π π π ad
ω

π / π π π bc

 
  

 
                                         ( 5.55) 

For calculation purposes, it is easiest to use the equation 
ad

bc
 using the values 

defined in Table 5.5.  The value of the OR can vary between 0 and infinity, with 

the value of 1 indicating that the two odds are equal.  The values 0 and infinity 

are obtained if any of the frequencies in the 2 x 2 table are equal to 0.  In 

paragraph 5.4.1 this case is described as a weak perfect relationship between x  

and y . 

 

Example 5.15 (Smithson, 2000: 324): 

A clinical psychologist has done research concerning snake phobias. The 

following table is obtained: 

 

Dislike snakes  

                                               No                  Yes                Total 

Fear of                 Yes              5(b)                49(a)              54 

Snakes                 No             49(d)              159(c)            208 

                            Total          54                   208               262 

 

The odds of people with a fear of snakes = 49/5 = 9,8 . 

The odds of people who do not have a fear of snakes = 159/49 = 3, 24 . 

The odds ratio is: 
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                            9,8/3,24 = 3,02=OR . 

(Note that OR  can also be obtained as follows  

                   ad / cd = 49 49 / 5 159 = 3,02=OR   . 

(The frequency of the Yes-Yes category is a, etc.). 

 

This means that the odds of a person with a fear for snakes is 3 times higher 

than for those people without a fear of snakes.  An OR value of 
1

0,331
3,02

  will 

have the same interpretation if we compare the odds of a person without a fear of 

snakes with the odds of a person with a fear of snakes.                                            

 

 

Smithson (2000: 326) states two reasons why the OR is preferable as a measure 

of the relationship to the φ -coefficient: 

 

1) It serves as an effective measure of weak perfect relationships; 

2) It remains the same even if a row or column in the 2 x 2 – table is 

multiplied by a factor. 

 

If the random sample is drawn from a population, the population  OR() is 

estimated by ̂ , where a, b, c and d are the sample frequencies.  If b or c or both 

are equal to zero, then ̂  is undefined.  The estimator proposed by Jewell (see 

Shoukri & Chaudhary, 2007) should then be used viz.  

J

ad
ˆ

(b 1)(c 1)
 

 
 

 

For Monte-Carlo simulations with n = 25 one finds that  J̂   has a smaller 

bias and mean squared error when compared to other estimators like ̂ . 
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Example 5.15 illustrates a near weak perfect relationship (the cell frequency of 5 

is “close to” zero).  In this case OR=3,02 and if the first row and column’s 

frequencies were 3 and 51, then the value would change to 5,522  and becomes 

infinitely large if the frequencies  were 0 and 54. The φ -coefficient for Example 

5.15, on the other hand, is 0,143 and increases to 0,26 if the first cell frequency 

is set to 0.  This indicates that it is far from a perfect relationship.  This helps to 

illustrate advantage 1) discussed above 

 

As far as advantage 2) is concerned, we will refer to the note stated in paragraph 

5.4.1 where two studies with different relative frequencies for x ‘s two categories 

produce two different φ -values; i.e., 0,11 and 0,14 .  For these two studies the  

OR – values are actually the same:  Study 1  :  
45 30

2,25
120 5





 

                                                          Study 2  :  
90 20

2,25
80 10





. 

Like the rate ratio, 1 2π / π ,  the OR  is usually judged by interpreting its distance 

from 1. 

 

Therefore, the natural logarithm of OR,  n ω , is sometimes easier to use 

because the distance from 1 on the original scale converts to a distance from 0 

on the natural logarithm scale. 

 

If a random sample is drawn from a population, then the population’s OR  ω  is 

estimated by ω̂ , where a, b, c and d are the sample frequencies.  For large 

samples we find that  ˆn ω  follows an approximate normal distribution with 

mean  n ω  and variance (Fleiss, 1994) 

                    1 1 1 1
ˆVar n ω

a b c d
                                                             (5.56) 

Therefore, a  100 1 α %  CI for  n ω  has the following boundaries  L;U  
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1 1 1 1

α
2

ad
n z

bc a b c d
      
 

 .                                                      (5.57) 

As a result, the boundaries for the CI for ω  are  

                  L
Lω e      and     U

Uω e  .                                                         (5.58) 

 

Further applications of odds ratios are discussed in Fleiss (1994):   

 When other variables (covariates) related to the response variable y , 

apart from grouping variable x , are included, one can apply a logistic 

regression analysis, from which the OR-value can be obtained directly. 

 The Mantel-Haenszel estimator is used whenever the covariates in the 

above situation stated above are categorical (i.e., the data is distributed 

into strata) and is another method to combine the values of log( OR ) . 

 

Newcombe (2006) provides the following reasons why OR is the most commonly 

used measure for 2 x 2 –frequency tables: 

a. The OR’s natural role in logistic regression 

b. It is the only sensible measure when one makes use of 

retrospective case-controlled study designs (as is often the case in 

epidemiological studies) instead of probability sampling. 

c. When the occurrence of an event (a disease for example) is rare, 

the OR’s value is very similar to the risk ratio, since a / b   a / (a+b) 

and c / d    c / (c+d). 

However, Newcombe warns that the OR value will always lie further away from 1 

than the risk ratio value and will thus overestimate the risk. Additionally, OR is 

use as if it is identical to the risk ratio, which is only the case in rare 

circumstances.  

 

Example 5.16: 

If the frequency table in Example 5.15 is the result of a random sample, and the 

resulting estimated odds ratio is 3,02ω̂   and the 90% CI for  n ω  is: 
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               1 1 1 1
3,02 ±1,645 + + +

5 49 49 159
n  

               
,105 ± 2,645×0,497

= 0,2873;1,9227

1
 

Thus, a 90% CI for ω  is:  1,333;6,840 ,  and the population OR can be as small 

as 1,33  and as large as 6,84  with a 90% probability.                             □ 

 

5.4.9  Interpretation of OR as an effect size 

 

According to Kline (2004a:147) and Chinn (2000) an OR can be reduced to a 

standardized difference analogously to δ .  However, since 

   1 2 21 11n π / π n π / π         and  each follow a logistic distribution, which is 

approximately normal with standard deviation 3π / 1,81 , and the 

standardized difference is thus      

       

 

1 1 2 2 1 21 1
OR

n π / π n π / π log it π log it π
δ

1,81 1,81

n ω
                                                                 =

1,81

          
 


                (5.59) 

The standardized difference ORδ  can be dealt with in a similar manner as δ , and 

the same guideline values can be used, i.e., 

Small effect         :          0,2ORδ   

Medium effect    :          0,5ORδ   

Large effect        :          0,8ORδ   . 

 

From (5.59) it follows that  1,81δORω e , therefore: 

Small effect         :            1,44ω   ,  which will be taken as 1,5  

Medium effect     :            2,48ω   .  which will be taken as 2,5  

Large effect        :            4,27ω   ,  which will be taken as 4,25  
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While an OR value larger than 1 indicates that the odds of the first population is 

indeed larger than the other, it does not necessarily indicate an important 

difference in the odds.  In other words, while the values 0,5  and 0,8  for ORδ , per 

the recommended guideline values, should be medium and large effects, the 

guideline values of 2,5  and 4,25  for the OR are suggested for medium and 

large effects. 

 

Based on a survey of medical journals which consisted of 392 articles, Burnand 

et. al. (1990) suggest the following guideline values for OR: 

 Significant : OR = 2,2 

 Substantially significant : OR = 2,5 

 Highly significant : OR = 4,0. 

The last two guideline values correspond to ‘medium’ and ‘large’ effects. 

 

Because ÔR  has a large sample normal distribution with variance independent of 

ÔR , then it follows, similarly to  , that the counternull values are ˆ2 OR .  From 

(5.59) we find that  

                                       
ˆ ˆ1,81 3,62ˆ  OR counternull OR

counternull e e    .                            (5.60) 

                     

A further interpretation of OR is as follows: 

According to Tritchler (1995) we find, for two normally distributed populations 

(pop.1 and pop.2) with means 1  and 2  and common standard deviation   that 

E = P(Classify x in pop.1 │ x is from pop.2) 

   = P(Classify x in pop. 2 │ x is from pop.1) 

    
1

2
    

 
,                                                                                                    (5.61) 

where  (t) is the cumulative distribution function of a standard normal 

distribution and  

                                               1 2 ,
 






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the standardised absolute difference in means as defined in Chapter 4. 

The special case of the linear classification rule used in discriminant analysis 

(see Chapter 8) in univariate populations then simplifies to:                                     

Classify x in pop.1 if 

                                        1 2

2
x

 
   if 1 2  . 

Tritchler (1995) then proposes the following joint probability of the two 

dichotomies ,x c x c   for Pop. 1 and Pop. 2: 

 

                                               Pop. 1      Pop. 2 

                               x c       (1-E).P(1)    E.P(2) 

                                    x c       E.P(1)         (1-E).P(2)     

 

where P(i) = P(x is from pop.1). 

The odds ratio of this 2 x 2 table is thus: 

                                            
2

1 1
,

1
E E E

E E E
                  

                             (5.62)  

and from (5.43b) it follows that 

                                                

1
1

2
.

1
2






   
 

   
 

                                               (5.63) 

Using the guidelines in Cohen (1988), then from (5.63): 

Small effect:          0,2  :   = 1,38   . 

Medium effect:       0,5  :   = 2,25   . 

Large effect:          0,8  :   = 3,64   . 

These values of   correspond relatively well with those obtained from OR  and 

those proposed by Burnand et.al. (1990). 
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The same warnings listed in paragraph 4.5.4 are also applicable here, meaning 

that the recommended guideline values should be dealt with on a case-by-case 

basis. 

 

In terms of a BESD, ̂  can be interpreted as follows:  with all of the marginal 

totals equal to 100 and by using (5.62) , alter the top-left cell of the 2 x 2 – 

frequency table to: 

                                                 ˆ ˆ100 /(1 ).                                          (5.64) 

 

Example 5.17: 

(a)  In Example 5.16 we found that 3,02ω̂   and the 90% CI for ω  was 

(1,333 ; 6,840).  The population value of ω  can thus vary from a small 

effect to a large effect.  The top-left cell of a  BESD in this case, has  

frequency: 

                                    100 3,02 /(1 3,02) 63,5    , 

giving the following  2 x 2 – table: 

 

Dislike snakes  

                                               No                  Yes                Total 

Fear of                 Yes            63,5               36,5              100 

Snakes                 No             36,5               63,5              100 

                            Total          100               100                 200 

                  

The counternull value of ÔR  is ˆ2 OR  = 
(3,02)

2 1, 22.
1,81

n
 


  Thus, the Dus 

the counternull value of ̂ : 

                                          1,81 1,22 9,12e   . 

Therefore, the odds ratio of 9,12 is as probable as OR = 1. 
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(b) For Example 5.10, if the samples are randomly drawn from the 

populations of individuals with heart disease and the population without 

heart disease, the 95% CI for the population OR is calculated as: 

              
78×61 1 1 1 1

1,96 + + +
42×59 78 59 42 61

   
 

n  

                    1,92 1,96× 0,07 = 0,652 ± 0,137 = 0,515;0,789= n   . 

Finally, the 95% CI for ω  is: 

                 0,515 0,789= 1,674 = = 2,201.L Uω e   ;  ω e  

In this situation the population value ω  has a small to a medium effect.   

 

 

                                                                                                                    □ 

 

5.5    Effect size of relationship between two nominal variables 

 

A sensible measure of the degree in which cell frequencies in a two-way 

frequency table deviate from the expected frequencies, if one assumes there 

is no relationship, is (Cohen, 1969, 1977, 1988): 

               
 22

1

m
i i

i i

f vX
w   

N Nv


                                                        (5.65) 

where if  is the thi  cell’s frequency;  

iv  is the expected frequency of the thi  cell if no relationship is 

assumed; 

and m IJ , where I  is the number of rows and J  is the number 

columns in the frequency table. 

Further, the chi-squared test statistic, 2X , is used to test for statistical 

significance relationship when a random sample is drawn. 

 

The expected frequency of a cell is: 
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(row total   column total of the specific row and column of the given cell)/ N , 

where N  = sum of row totals = sum of column totals = total frequency. 

 

 

Example 5.18:   

In Example B of Chapter 3, the frequency table, where lecturers were removed: 

 

                                             Male students            Female students              Total 

Type          SJ                         57(64,79)                    79(71,21)                      136 

                  SP                         29(24,77)                    23(27,23)                         52 

                  NT                         23(20,01)                    19(21,99)                         42 

                  NF                         12(11,43)                    12(12,57)                         24 

                 Total                     121                              133                                   254 

 

                 

     

     

   

2 2 2
2

2 2 2

2 2

57 - 64,79 79 - 71,21 29 - 24,77
+

64,79 71,21 24,77

23- 27,23 23- 20,01 19 - 21,99
      + + +

27,23 20,01 21,99

12 -12,57
+

11,43 12,57

4,074

X

12 - 11,43
      +

      =

 

 

Thus 
4,074

= 0,127
254

w=                                                                                       □ 

The measure w  can serve as an effect size index for measuring the relationship 

between two nominal variables (temperament type and gender in Example 5.18).  

It is clear that the more if  differs from iv , the larger the value  2
i i if v /v  

becomes and, if for most of the cells there is a large difference, then 2X  should 

also be large.  The size of 2X  is also influenced by N  and so 2X / N  is also a 

more reasonable measure.  In the special case of 2 x 2-tables  

                         2 22φ X / N w   ,                                                                 (5.66) 
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which is also the reason why 2X / N  can be used as an effect size index for 

relationships. 

 

Smithson (2000: 313) shows that while N  influences the size of 2X , the number 

of cells also play a role in the sense that the more cells in the table, the larger the 

2X  value becomes (the number of terms in the sum increases).  To compensate 

for this, one can use Cramer’s V  (see also Cohen, 1969, 1977, 1988):   

                        
 

2

1

X
V

N k



 ,                                                                     (5.67)  

where  k min I ,J . 

 

In Example 5.18, the value 2k   is used, because 4I  , 2J  , so that V  has 

the same value as w . 

 

Note: 

For smaller tables, V  and w  are almost the same. In these cases w  can be 

interpreted in much the same way as a correlation because it lies between 0 and 

1. However, the same cannot be said of V  for larger tables.  For 2k   the 

maximum value of V  is smaller than 1, meaning that the size of the table has an 

influence on the value of V . 

 

5.5.1    Estimation of w  

 

When a random sample is drawn from a population, the effect size-index w  can 

be estimated by the statistic ŵ  by making use of the sample frequencies.  

 

For smaller samples ŵ  underestimates w  and the bias for 2w  is approximately 

  1 1I J

n

 
, where n  is the sample size.  (see Steyn, 2002). 
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Therefore, w  should rather be estimated by: 

 
  1 12 I J

ˆw = w  - 
n

   ,                                                                      (5.68) 

which is approximately unbiased for w . 

 

Example 5.19  (Smithson, 2000): 

Through the use of the Crosspatch-program of Smithson, the following 

frequencies are obtained from a random sample where the preferences of 10 to 

40 year-old people divided into 3 age groups and into 4 types of shoes: 

 

Shoe sizes 

                                            1                 2               3              4              Total 

Age                  10-19       86(44)         5(12,7)     38(54,6)    14(31,7)        143 

                         20-29         4(18,8)    14(5,4)       4(23,3)     39(13,5)          61 

                         30-39       14(41,2)    11(11,9)    87(51,2)    22(29,7)        134 

                         Total       104           30             129           75                  338 

 

 2 194,01 0,0001X   p<  

194,01/338 = 0,758ŵ=  

 2 0,536  = 3V̂ w / because k  . 

There is a statistically significant relationship  0,000p   in this example.  The 

estimator’s value is ŵ  = 0,758 , and it can be used to determine the effect of the 

relationship between shoe type and age in the population. This estimator is, for 

practical purposes, unbiased because the bias 2ŵ  is only approximately (2 x 

3)/338=0,018, meaning that 2w 0,758 0,018 0,746    which is close to 0,758 . 

 

5.5.2 Confidence interval for w  
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According to Johnson et al. (1995:  467) the chi-squared  statistic  2X  has an 

approximate non-central chi-squared distribution with   1 1I J   degrees of 

freedom and non-centrality parameter 2ncp nw .  As in the case of δ  in 

paragraph 4.1.2, it is possible, by making use of computer programs to first 

determine a  100 1 α %  CI for ncp  and from there it is possible to obtain an 

approximate a CI for w .  The SAS-program which can be used to calculate this is 

called VI _ w  and can be downloaded from this manual’s webpage. 

 

The 95% CI for w  in Example 5.19 is:  (0.640; 855) which means that the 

unknown population value, w , can vary between 0,64 and 0,86 with a probability 

of 0,95 . 

 

5.5.3 Guideline values for w  

 

Cohen (1969, 1977, 1988) provides guideline values for w  in a table where w  

and corresponding Cramer’s V   values are provided for different values of k .  

Table 5.6 is an extract of this table and makes use of the relationship stated in 

(5.40). 

 

Table 5.6 

Values of w  and corresponding V  

                       w           k =2              3              4              5              6 

                      0,1            0,1              0,071      0,058       0,05         0,045 

                      0,3            0,3              0,212      0,173       0,150       0,134 

                      0,5            0,5              0,354      0,289       0,250       0,224 

 

Note that if 2k=min(I,J)= , then w=V .  When 2I=J= , then we have that w=φ . 
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The guideline values chosen for w  are thus based on the same guidelines used 

for φ : 

 Small effect:         0,1w=  

 Medium effect:     0,3w=  

 Large effect:         0,5w= . 

 

Cohen warns that for larger tables these guidelines might be unrealistic.  

Cramer’s V  is actually a modified index for larger tables and so Table 5.6 can 

then be used.  For example, if 6=I  and 10J= , then 6k   and V -values of 

0,224,  0,134  and 0,045  can be considered as large-, medium- and small 

effects. 

 

In Example 5.18 we found that 0,127w=  and because = 2k  in Table 5.6, it is 

found to be a small effect.  For a larger table with the same w -value it would be 

considered a medium effect if k  was, for example, larger than 4 .  In Example 

5.19 even the lower bound of the 95% CI gives us the right to classify it as a 

large effect (because for = 3k  it is a large effect 0,354 ). 


