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CHAPTER  2 
 

Types of Effect size indices:  An Overview of the Literature  
 
 
There are different types of effect size indices as a result of their different 

interpretations.  Huberty (2002) names three different types: 

• Group differences 

• Relationships 

• Group overlapping 

Before we provide an overview of these types, we will pause a moment to look at 

the measurement scales and the assumptions,  each of which produce different 

indices.  

 
 
2.1 Measurement scales and assumptions  

 

The different effect size indices do not only go hand-in-hand with the statistical 

analyses or objectives to which one strives, but they are also dependent on the 

type of measurement.  For continuous measurements (i.e., which can take on 

any value within a given interval, e.g., a person’s height or IQ), sample means 

are used to compare different populations, while Pearson’s correlation coefficient 

is used to indicate relationships between the different measurements that can be 

made in the sample.  If we are working with categorical data (i.e., data whose 

measurements are divided into categories, e.g., language groups or gender of 

people), then proportions can be used to make comparisons between 

populations and measures obtained from two-way frequency tables can be used 

to determine relationships. In the discussion that follows we will distinguish 

between effect size indices based on the following measurement scales: 

• Interval/ratio (continuous measurements, for example, IQ, temperature, 

blood pressure). 
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• Ordinal (categorical measurement with ordered categories, e.g., 

employment position in a company or academic qualification of an 

individual). 

• Nominal (categorical with no ordering, e.g., racial group or church 

membership of an individual). 

• Dichotomous (nominal with only two categories, e.g., someone’s HIV-

status as positive/negative or gender as Male/Female). 

 

In addition to the type of scale, the effect size indices also depend on the 

situation or assumptions underlying the populations or models being used. 

 

The situation which one finds oneself in is determined by: 

• The number of populations or groups,   

• If one is studying the entire population  (for example, if one wants to only 

analyse the data from the respondents of a questionnaire and there is no 

interest in generalizing the results further) or if one is studying only a 

random sample, and 

• If univariate or multivariate effect sizes must be calculated. 

 

The assumptions that one might consider include: 

• The assumption of homogeneity of variances (i.e., the equality of standard 

deviations) of interval scaled measurements between different populations 

when effect size indices are based on means or contrasts.  Particular 

attention will be paid to this in the next chapter.  

• Underlying models are usually assumed to consist of fixed factor effects or 

random factor effect or a combination of the two. Different effect size 

indices will be considered for each of these assumptions. Chapter 6 will 

provide further details on these topics. 

• When confidence intervals for effect size indices are calculated, the 

assumption of normality of the interval scaled measurements is important. 
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• Independent groups (e.g., control and experimental groups) and 

dependent groups (e.g., a group before a treatment, and the same group 

after a treatment) each have their own specific effect size indices (see 

Chapter 4). 

• Using covariates for correction (in analysis of covariance or ANCOVA) 

introduces its own modifications to effect size indices (see paragraph 6.4). 

• When one is concerned with the reliability of a variable, then an 

attenuation correction for effect sizes can also be introduced (see 

paragraph 5.1.4). 

 

 

2.2 Effect size indices for differences in groups 

 

In a situation where the means of two groups must be compared, Cohen (1969, 

1977, 1988) proposed the use of the standardized difference of the means (d).  

In the 1970’s and 1980’s there was a great deal of discussion as to how the 

difference in the means ( )1 2µ µ−  should be standardized. Cohen suggested that 

one should simply divide it by the common standard deviation ( )σ  of the two 

populations, since this assumes homogeneity of variances.  Glass (1976) 

proposed that only the standard deviation of the control group should be used in 

the denominator.  Hedges (1981), in contrast, modified d so that it is an unbiased 

estimator for random samples.  For dichotomous variables Cohen (1969, 1977, 

1988) compares two proportions with the index h, which is the difference 

between the arc-sine transformations of the proportions.  For differences 

between two means where heterogeneity of variances is assumed, Steyn (2000) 

proposes an adjusted index 
a

∆  along with a “conservative” estimator 
a

∆̂ .  These 

indices could also be applied when comparing proportions (Steyn 1999). 

 

When more than two groups are compared, Cohen (1969, 1977, 1988) proposes 

an index f which represents the variance of the group means relative to the 
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common variance σ .  He also recommends using ( )
max min

/δ σµ µ= −  as an 

index, where 
max

µ  and 
min

µ  are the largest and smallest population means 

respectively.  A discussion concerning cases where the effect sizes of contrasts 

are important can be found in both Olejnik & Algina (2000) and Kline (2004a: 

Chapter 6).  The former also contemplates cases where means are adjusted for 

covariates in an ANCOVA design, as for contrasts within individuals. 

 

 

2.3 Effect size indices based on Relationships 

 

The familiar  Pearson product moment coefficient of correlation ( )r  is a 

measure of the linear relationship between two continuous or interval scaled 

variables. As such, r can be used as an effect size index (Cohen, 1977, Chapter 

3) to express the strength of the linear relationship.  

 

In cases where one requires the strength of the relationship between nominal 

scaled variables, Cohen (1977, Chapter 7) provides an effect size, based on the 

Chi-squared test statistic, called w. A special case of this effect size is called the 

φ -coefficient and it is used for dichotomous variables.   

 

The correlation between a grouping indicator variable (x), which only takes on 

two values (say 1 and 2) and is used to distinguish between two groups, and the 

interval scale variable (y) denotes the relationship between y and the group 

membership (this is also known as a point bi-serial correlation, 
pb

r ).  This is 

another sort of interpretation of effect size, because the more the group means 

change relative to their standard deviations, the larger the value 
pb

r  becomes. 

Cohen (1969, 1977, 1988) also expressed 
pb

r  in terms of d, the standardized 
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differences in means.  The squared value, 
2

pb
r , in turn, represents the proportion 

of variation of y attributed to its population membership, which is a special case 

of Pearson’s eta-squared ( )2η .  Eta-squared can serve as an effect size 

whenever more than two population means are compared, in which case it 

represents the ratio of the between-group (or model) sum of squares and the 

total sum of squares of a one-way ANOVA model.  Hays (1963) made use of the 

omega-squared index ( )2ω  which recently was redefined (Olejnik & Algina, 

2000).  When the grouping variable can be considered to be a “random factor”, 

the inter-class coefficient of correlation ( )I
ρ̂  is the recommended measure of 

this relationship and the square of this quantity, 
2

I
ρ̂ , serves as an estimator for 

2η   (Olejnik & Algina, 2000).  Effect size indices for situations where two or more 

grouping variables are used in various combinations of fixed and random factor 

effects are provided by Olejnik & Algina (2000) as well as Kline (2004a:  Chapter 

7). 

 

 

2.4   Effect size indices based on Group overlapping 

 

Tilton (1937) suggested that the comparison between two means should be, as 

far as is possible, enhanced by making use of a measure of overlapping such as 

the percentage of area under the distribution common to both distributions. 

Cohen (1977:23) defines various overlapping indices when two normally 

distributed populations with equal standard deviations are used and also 

provides the relationship of this quantity to the standardized difference in means 

(d).  This index could, for example, be used to help interpret the value d: a small 

degree of overlapping suggests large values of d (for further reading see Huberty 

& Lowman, 2000, as well as Kline, 2004a:  Figure 4.1). 
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In this way group overlapping can be related to forecast discriminant analysis.  

Huberty & Holmes (1983) apply it in the univariate two-sample case, where they 

relate the probability of correct classification (percentage of overlapping) to the 

effect size index d.  A more sensible “better-than-chance-hit-rate”  index (I) is 

suggested by Huberty (1994), while Huberty & Lowman (2000) made use of this 

idea in a multivariate context. Attention is paid to this topic in Chapter 8. 

 

 

 

2.5 Multivariate Effect size indices 

 

In the case where a dependent continuous variable’s relationship with more than 

one independent variable has to be determined, (i.e., with multiple linear 

regression, abbreviated as MLR) the coefficient of multiple correlation (R) is the 

appropriate measure.  In an attempt to relate MLR to ANOVA,  Cohen (1977:410) 

introduced the 
2

f index which describes the explained variation ( )2
R  relative to 

the unexplained variation ( )2
1 R− .  He goes further to define 

2
f  in terms of the 

partial 
2

R which in turn is a function of the semi-partial 
2

R . The semi-partial 
2

R is 

defined as the increase in 
2

R when a set of variables, B, is added to the existing 

set, A (see also Smithson, 2001). 

 

In multivariate analysis of variance (MANOVA), Wilk’s Λ  is a well known statistic.  

The generalized 
2

1η = − Λ  is therefore a logical effect size index. Similarly, we 

could also use 
2 1

1 sτ = − Λ , with s = min (p, q),  where p is the number of 

variables and q is the hypothesized degrees of freedom (equal to k-1 if k 

populations are compared.)  (Rencher, 1995:192). 

 

Other indices are ζ  and ξ , which are based on the Hotelling-Lawley Trace 

statistic and Pillai’s statistic (Rencher, 1995; Huberty, 1994; Olejnik & Algina, 
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2000).  Modifications were also introduced to estimate the generalized 
2η  (see 

Olejnik & Algina, 2000:273 and Steyn & Ellis, 2009). 

 

 

In the case where only two populations are compared with one another, the 

Mahalanobis distance,
2

M
D , is used as an effect size index (Kline, 2004b: 3-4 and 

Steyn & Ellis, 2009)).  This is a generalization of Cohen’s d for more than one 

variable.  In the case where one has more than two populations, 
2

M
D  can also be 

defined for contrasts and expressed in terms of Wilks’ Λ  for the contrasts.  (See 

Kline, 2004b: 10). 

 

The better-than-chance-hit-rate index by Huberty (1994) and Huberty & Lowman 

(2000) is, by its very nature, a multivariate index and these authors show how it 

can be used as an index for more than two groups.  

 

 

2.6 Concluding remarks 

 

Huberty (2002) provides the details and history of many other effect size indices, 

and goes on to summarize it graphically in a diagram of these indices along with 

dates (his Figure 1).  The discussion up to this point has focused only on the 

most important indices. In the following chapters an attempt will be made to 

provide the full details of each of the effect sizes along with the methods used to 

calculate them and illustrative examples.  When calculations are difficult to do by 

hand, an effort will be made to supply any available computer 

programs/packages/spread sheets which can be used to perform these 

calculations. 

 

 

 


