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CHAPTER 4 

Standardized Differences 
 

If one would like to compare groups with respect to some continuous 

characteristics (e.g., Academic achievement, IQ, cholesterol level, etc.), the 

obvious method is to compare the arithmetic means of the groups with one 

another. Consider the following example: 

 

Example 4.1 :   

Two random samples of size 100 and 200, drawn from populations A and B, 

have mean IQs of 110 and 107 respectively and standard deviations 10 and 12 

respectively.  The usual z-test (t-test for large samples) produces: 

                       ( )
2 2

110 107
2 29 0 05
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100 200

, p ,z
−

= <

+

= . 

This means that the null hypothesis 
0

0
BA

:H µ µ− =  will reject at a 5% 

significance level, where 
A

µ  and B
µ  are the population means.  Therefore, if we 

say that 
A

µ  and B
µ  differ, then the probability that this statement is incorrect is 

less than 0,05.  It might be found that a difference in the means of 3 units is 

significant; the interpretation of this is that in only 5% of the cases where one 

repeatedly draws samples of the same sizes from populations A and B, the 

statement (of rejecting oH ) would not be supported. This does not necessarily 

indicate that the difference is an important difference. Psychologists who have 

experience with the IQ scale might use their own judgement and say that a 

difference of 3 is actually too small to indicate any sort of practical significance.  

The difference in the means provides an effective measure to characterize the 

practical significance or importance of the difference between the populations. � 
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� 

In another example we find that the mean attitude of a group of first year 

students concerning certain aspects of their subject is 6,8 (measured on a 

stanine scale, i.e., a normalized scale with scale values between 1 and 9, a 

mean of 5 and standard deviation of approximately 2).  The value of 6,8 is almost 

one standard deviation greater than the mean scale value, and many people 

might be tempted to say that this value is practically significantly different from 5. 

Another group, on the other hand, might have a mean attitude score of 4,6 and 

one might feel that this value is very close to 5, meaning that there is not a 

practically significant difference.   

 

In both of the above examples the scale is “known” in the sense that the standard 

deviation is known.  The difference of 3 units between the groups (in the first 

example) when compared to the standard deviations of 10 and 12 is thus small 

when compared to the difference of 1,8 (in the second example) above the 

standardized mean, because in this case the standard deviation is only 2.  It thus 

seems sensible to divide the differences in the means by a standard deviation 

such that 

                                                       1 2

σ

µ µ
δ

∗
=

−
                                              (4.1) 

is an effect size that is not scale dependent.  Here the quantities 
1

µ  and 
2

µ  are 

the two population means and *σ  is any one of four possibilities for the standard 

deviation. If 
1

σ  and 
2

σ  are the two population SDs then the four choices of *σ  

are: 

(a)    *σ σ=  the common SD of the two populations (i.e., the assumption here is 

that the SD of both populations is equal to σ );  

(b)   
1

*σ σ=  or 
2

σ , depending on one’s point of view (for example, if population 

1 is the control group or the standard treatment group, then 
1

σ σ
∗ = ); 
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(c)    *σ =   ( )1 2
,σ σmax  , the maximum of the two SDs; 

(d)    
2 2

1 1 2 2
* w wσ σ σ= + , a weighted SD, where 

1
w  and 

2
w  are the weights so 

that 
1 2

1w w+ = .   

 

In the following sections we will focus on each of the abovementioned 

possibilities. 

       

4.1   Cohen’s d 

 

Cohen (1969, 1977, 1988) assumes homogeneity of population variances and 

uses the common SD σ  in the denominator: 

                                1 2d
µ µ

δ
σ

≡ =
−

                                                            (4.2) 

Note: 

In the text that follows we will denote population effect size indices using Greek 

letters (like δ ), therefore we rather refer to the symbol δ  instead of the letter d 

(which Cohen uses). 

  

4.1.1 Estimation of δ : 

Whenever random samples are drawn from two populations, the value δ  cannot 

be calculated directly, but must be estimated from the sample. 

 

Example 4.2 :  

Similar to Example 1 discussed earlier, consider the IQs of students, except that 

now we have two complete populations.  Let 
1

111µ =  and 
2

105µ =  with 

1 2
10σ σ= = , then  
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111 105

0 6
10

,δ
−

= = . 

This result shows that the difference between the two population means is 0,6 

standard deviation units.  Note that if the example used a different variable, for 

example, the mean diastolic blood pressure, and had means of 75 and 66 for the 

two groups and common SD of 15, then  

                      
75 66

0 6
15

, .δ
−

= =  

This result can be interpreted in the same way as the previous one (i.e., the 

difference is 0,6 standard deviation units, now measured in mmHg).              ��                    

                                                                                                                          � 

 

A natural estimator (Hedges g) is given by 

               1 2

p

x x
ˆg ,

s
δ

−
≡ =                                                                                (4.3) 

where 

               
( ) ( )2 2

1 1 2 2

1 2

1 1

1
p

n n
s ,

n n

s s− + −
=

+ −
                                                     (4.4) 

Is the common SD and  

               
1 2

x x, :  sample means 

               
1 2

n n, :  sample sizes 

               
1 2

s s, :  sample standard deviations. 

 

Note: 

We will indicate that a quantity is an estimator for the population index based on 

sample information by placing a “hat” on the symbol, e.g., δ̂  is an estimator for 

δ . 
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An alternative formula in terms of the Student t-statistic (or z-statistic if 
1

n  and 
2

n  

are large) is: 

                             1 2

1 2

ˆ t
n n

n n
δ =

+
                                                                    (4.5) 

The estimator δ̂  is actually positively biased meaning that, on average, δ̂  over 

estimates δ .  To correct this, especially for smaller values of 
1

n  and 
2

n , the 

following modified effect size index can be used (see Hedges and Olkin, 

1985:81): 

                         ( )3
1

4 9
a

ˆ ˆ ,
n

δ δ= −
−

                                                               (4.6) 

where 
1 2

n n n .= +  

 

Example 4.3 :  

 (Kline, 2004a:  104 -105) 

Suppose that the sample means of the aptitude scores of men and women are 

13,0 and 11,0 with variances of 7,5 and 5,0 respectively.  Table 4.1 displays the 

results of the t-tests and effect size indices for different sample sizes( )1 2
n n= . 

 For 
1 2

5n n= = , then δ̂  is modified to become ˆ
a

δ  as follows: 

                 

( ) ( )
= 6,25 = 2,5

5 1 7 5 5 1 5 30 20

5 5 2 8
 

                              

p

,
s

− + − +
=

+ −
=

 

13 11ˆ 0,8
2,5

δ −= =  
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( )
( )

3
1

4  10 9

3
    = 1 0 8

31

    = 0,903  x  0,8  =  0,722.

a
ˆ ˆ

x

,

δ δ= −
−

−  

 

 

Table 4.1 

                               Sample sizes 

Statistic                         5                      15                       30 

                    t-test: 

                        t                               1,26                  2,19                    3,1 

                       df*                               8                      28                      58 

                        p                              0,243               0,037                  0,003 

                 Standardized difference: 

                       δ̂                              0,80                0,80                     0,80 

                       
a

δ̂                             0,72                0,78                     0,79 

                   __________________ 

                     df* : degrees of freedom 
1 2

2+ −n n  

 

From this table it is clear that the t-statistic values become larger (and the p-

values become smaller) as the sample size increases.  The estimated effect size 

index δ̂ , however, remains the same because it does not rely on either 
1

n  or 
2

n .  

Further, the values of the modified estimator 
a

δ̂  are all smaller thanδ̂ , but 

increase to δ̂  as 
1

n  and 
2

n  become larger.     ��� 
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 4.1.2  Confidence intervals forδ  

If one assumes that the populations are normally distributed with equal 

variances, then the statistic  

( ) ( )
1 2 1 2

1 2
1 1

v ,ncp

p

x x

s
t

/ n / n

µ µ− − −
=

+
                                                                          (4.7) 

follows a non-central t-distribution with 
1 2

2v n n −= +  degrees of freedom (df) 

and non-centrality parameter  

                      
( )

1 2 1 2

1 21 2
1 1/ n / n

n n
ncp

n n

µ µ

σ
δ

−

+
= =

+
                                       (4.8) 

Cumming & Finch (2001) discuss the non-central t-distribution at length and they 

make use of their ESCI-software and, in particular, the NonCentral tNET-program 

(which can be downloaded from this manual’s website) to further clarify how this 

distribution is used.   

 

One can easily construct a ( )100 1 %α−  confidence interval (CI) for ncp by 

making use of the appropriate computer software (see, for example, Kline, 

2004a:  Table 4.6).  The program should only require you to input the values t, df 

and α .  From this output and equation (4.8), a CI for δ  can be constructed.  The 

SAS-program VI_delta  (available on the website of this manual) makes use of 

this method.  Zou (2007) also provides this program.  

 

More details concerning the methods used to construct CI are made available in 

Appendix A. 

 

 An approximate CI for δ  is given by Hedges & Olkin (1985:86): 

Lower bound:  
2L /a

ˆ ˆz δαδ δ σ= −  

Upper bound: 
2/U a

ˆ ˆz δαδ δ σ= + ,                                                                     (4.9) 
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where 
2/

zα  is the ( )100 1 2/α− -th percentile of the standard normal distribution  

and where 

               
( )

2

2 1 2

1 2 1 2
2

aˆ
ˆn n

n n n n
δσ

δ+
= +

+
,                                                            (4.10) 

is the estimated asymptotic variance of a
δ̂ .  In a simulation study conducted by 

Hedges & Olkin(1985: 86-88), it would appear that this approximate interval 

achieves the correct coverage probability when equal sample sizes greater than 

10 are used.  

 

Other approximate CI’s for δ  are given in Wu et.al. (2006).  According to various 

simulation studies conducted by Wu et al., the following method of CI 

approximation produces the correct coverage probability for sample sizes as 

small as 5:  

Let  1 2 2 14 2 / 2 /a n n n n= + + , then a variance stabilizing transformation of d is:   

2 2( ) 2 ln / / 1h d d a d a = + +
 

, so that  ( )( ) ( )n h d hδ−  follows an approximate 

standard normal distribution.  The ( )100 1 %α−  CI for ( )h δ  is then  

( )( ) ( ) / 2, ( ) /h hL U h d z nδ δ α= ± .  

The inverse transformation is: 

( )2 ( )

( ) / 2

1

2

h

h

a e

e

δ

δ
δ

−
= , which means that the ( )100 1 %α−  CI for δ  is: 

( ) ( )( ) ( )

( ) ( )

2 2

/ 2 / 2

1 1
,

2 2

h h

h h

L U

L U

a e a e

e e

δ δ

δ δ

 − −
 
 
  

. 

 

Example 4.4 :  

In Example 4.1, if one assumes that the population variances are equal, then the 

estimator δ̂  is calculated as follows: 
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( ) ( )

( )

2 2100 1 10 200 1 12 38556
11 37

100 200 2 298

110 107 11 37 0 26

.

ˆ / . . .

s

δ

− + −
= = =

+ −
= − =

 

From (4.5) it follows that 1 2

1 2

n n
t

n n
δ̂

+
= =

100  200
0 26 x 

100 + 200
,

×
= 2,12. 

Note that the t-value is smaller than z=2,29 (in Example 4.1) where no 

assumptions of homogeneity of variances are made.  As a result of the large 

values of 1n  and 2n , 
a

δ̂  is also 0,26.  Let 0 05,α =  and note that the degrees of 

freedom are v = 100 + 200 – 2 = 298, then the exact 95% CI for δ  calculated 

using computer software (see Appendix A) is: (0,018; 0,500).  This means that 

the population effect size index can be as small as 0,018 and as large as 0,5 with 

probability 0,95.  In other words, if samples of the same size are randomly and 

repeatedly drawn from populations A and B then 95% of the CI’s calculated from 

these samples will contain the unknown value δ . 

 

The approximate 95% CI for δ  can also be calculated.  Here 0 025 1 96,z ,=  and                           

( )
2

2

L

100 200 0 26
0 01500 0 000113

100  200 2 100 200

                                                    =0,015113

0 26 1 96 0 0151 0 26 0 241 0 019

0 26 0 241 0 501U

ˆ
,

, ,

, , , , , ,

, , , .

δσ

δ
δ

+= + = +
× +

= − = − =
= + =

 

The interval (0,019; 0,501) is very close to the exact interval calculated above.    

�

 

 

Note: 

As the sample sizes 1n  and 2n  become smaller, the difference between the 

approximate interval and the exact interval becomes more pronounced.  Table 

4.2 shows both of these intervals for three sets of sample sizes used in Table 

4.1: 
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Table 4.2 

VI                           1 2n =n = 5                     1 2n = n = 15                     1 2n = n = 30  

Exact               (-0,523 ; 2,072)              (0,048 ; 1,539)                  (0,271 ; 1,324) 

Approximate    (-0,559 ; 1,999)             (0,039 ; 1,521)                  (0,264 ; 1,316) 

 

The approximate interval clearly improves as 1n  and 2n  become larger.  In 

Example 4.3 with 1 2 30n n= = , Kline (2004a:  Table 4.6) states that the 95% CI for 

δ  is (0,271 ; 1,324). 

The EXCEL spreadsheet EffectSizeCalculator.xls enables one to calculate the 

estimates δ̂  and ˆ
aδ , and the approximate CI’s by only having to specify the 

means, SDs and group sample sizes.  This spreadsheet is available on the 

website for this manual. Another handy EXCEL spreadsheet, also available on 

this manual’s website, is Effect_Sizes_Spreadsheet.xls which calculates Cohen’s 

d for different combinations of t, 1n  and 2n .  The 90% ( )0 10,α =  and 99% 

( )0 01,α =  CI’s are respectively (0,355; 1,239) and (0,016; 1,489).  Note that the 

interval becomes “narrower” for large values of α , and becomes wider  for small 

values of α . 

 

4.1.3  Counternull effect sizes  

 

Suppose for the effect size δ  given in (4.2) that σ  is known and is therefore 

estimated by  

                                                       1 2 .
−= x x

d
σ

 

The null hypothesis states that : 0,oH δ =  therefore, under oH : 

1 2X X
P d p

σ
 − > = 
 

, which is the two-sided p-value of, for example, a z-test 

(under the assumption of normally distributed populations or large samples from 
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any population).  The following figure illustrates this, using the sampling 

distribution of ( 1 2X X− ) /σ : 

0-d d

p/2 p/2

 

 

If the hypothesis :oH dδ =  is to be tested, then under oH we find that: 

                        1 2 1 20 2 .d d

X X X X
P d P d pδ δσ σ= =

   − −> = < < =   
  

 

d0 2d

p/2 p/2

 

 

We see in the in the figure above that the distribution of 1 2X X

σ
−

 was shifted d 

units to the right but the shape of the distribution remained the same. This only 

ever happens if the distribution’s standard deviation does not depend on δ  . In 

these cases we say that the effect size d is translation invariant. 
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 This means that the probability that the effect size is smaller than or equal to 0 is 

equal to the probability that it will be greater than or equal to 2d, if dδ = .  This 

interval (0,2d) is called the “null-counternull” interval  for δ  and 2d is known as 

the “counternull” value of the effect size. 

 

The ( )1 α− 100% confidence interval (CI) for δ  is:                                                           

 

 

 

which covers δ  with probability ( )1 α− 100%.  It is clear that there is no direct 

relationship between the CI and the null-counternull interval, except that they are 

equivalent if we choose 

                                         1 2
/ 2

1 2

n n
d z

n nα
+=  . 

If : 0oH δ =  is rejected at a significance level of α , then d is typically large and 

the interval (0,2d) will be wide. The interval can also be interpreted as a CI with 

confidence coefficient greater than 1 - α . 

 

Example 4.4 (continued): 

The null-counternull interval is (0, 2d) = (0; 0,52), meaning that the probability 

that the effect size δ  is equal to zero is the same as the probability that it is equal 

to 0,52.  Note that this closely corresponds to the 95%CI of (0,018; 0,500) which 

was obtained earlier. 

 

Remarks: 

 

(a)  The interval (0,2d) is obtained from the symmetry of the sampling 

distribution of d and because d is translation invariant. 

(b) If σ  is unknown and is estimated from the sample, then we obtain, for 

example, the estimator δ̂  (in 4.3), which follows a non-central t-distribution 

1 2
/ 2

1 2

,
n n

d z
n nα
+±
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under the assumptions of normality of the population.  This estimator for δ  

is no longer translation invariant and is also positively biased.  This means 

that if dδ =  then the probability that that the effect size is 0 or less is 

approximately equal to the probability that it is 2d or greater. This 

approximation improves with larger samples and smaller values of d.  

 

Grissom & Kim (2005: 65-67) discuss the counternull effect sizes in greater 

depth. We will return to this topic in later chapters. 

 

4.1.4  Interpretation of the counternull effect sizes 

 

Rosenthal et.al (2000: 14) provides the following two examples to illustrate the 

usefulness of counternull effect sizes:  

1.  Suppose that ˆ 0,3δ =  and that the test for 0 1 2:H µ µ− =  0 produced p = 

0,15.  The approximate counternull value is then ˆ2 0,6δ =  indicating that δ  

could just as easily be as large as 0,6 as it could be as small as 0, 

notwithstanding the rather large p-value of 0,15.  We are thus cautioned 

against not necessarily interpreting a statistically non-significant result as 

a zero value of the effect (i.e., 0δ = ).  This results in the problem 

described in the bottom-left cell of Table 1 in Chapter 1. 

2. In a very large clinical trial a new, expensive medication used to lower 

body temperature is tested against aspirin.  

A clear statistically significant effect in favour of the new medication is 

obtained with p = 0,013 (one-sided) whereas ˆ 0,03δ = . This results in a 

null-counternull interval of (0,00; 0,06), and consequently produces a 1 - 2 

(0,013) = 0,974, i.e., 97,4% confidence interval. Since δ  can only be as 

high as 0,06 with high probability, it is clear that one cannot justify the use 

of the more expensive medication in practice. This shows that a 

statistically significant non-zero effect size does not necessarily indicate a 
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scientifically important effect – this is the situation discussed in the top-

right cell of Table 1 of Chapter 1. 

 

The null-counternull interval produces something similar to a confidence interval 

for the effect sizes and it provides more information when judging the actual 

effect size values. 

 

 
 

 

 

4.2 Glass’  ���� 

 

If one has an experimental population and a control population, then Glass 

(1976) suggests the following effect size index 

                           
( )E K

K

µ µ
σ
−

=� ,                                                                       (4.11) 

 where Eµ  and Kµ  are the experimental and control population means 

respectively and Kσ  is the control population’s standard deviation. 

 

Example 4.5 :  

For Example 4.2, suppose that Eµ =111 with a SD of 10 and Kµ =105 with Kσ =15, 

then  

                       ( )111 105 15 0 4/ , .= − =�  

This index value is smaller than 0,6 found in Example 4.2 because the difference 

is divided by a different SD, namely Kσ  instead of σ , the common SD.          � 

 

4.2.1 Estimation and confidence intervals for �. 
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In the case where a random sample is drawn from a population, one can use the 

following estimator: 

             E K

K

x x

s
ˆ −=� .                                                                                        (4.12) 

This estimator uses the sample means of both groups and the sample standard 

deviation of the control group instead of using the population parameters. 

 

According to Kline (2004a: 108) the asymptotic standard error of �̂  is given by:   

                     
( )

2

2 1
E K

E K K

n n
ˆ ,

n n n

ˆσ += +
−�

�
                                                          (4.13) 

so that the approximate ( )100 1 %α−  CI for � is given by the bounds: 

                       2

2

L

U

ˆZ

ˆZ

ˆ α

α

σ

σ

= −

= +
�

�

� �

� �
                                                                             (4.14) 

 
Example 4.6:  

In Example 4.3, assume that the women are the control group with sample size 

20 and the sample size of the men’s group is 30.   

                ( )
230 20 0 894

0 0833 0 0210
30 20 2 20 1

                                          =0,323

,
ˆ , ,

x
σ ∆

+= + = +
−  

The bounds of a 90% CI are thus: 

                

0 894 1 645 0 323 0 894 0 531

                                         = 0,363

0 894 0 531 1 425

L

U

, , x , , ,

, , ,

= − = −

= + =

�

�

 

This means that, with 90% probability, the value of �  can be as low as 0,363 

and as high as 1,425.                                                                                  � 

 

For this index one does not necessarily have to assume homogeneity of 

variances and the control population is used as a reference point.  The mean of 

an experimental group will sometimes be raised (or lowered) by a treatment or 
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intervention and, occasionally, the variance is altered at the same time.  In these 

cases Glass’s �  would be the recommended index to use. 

 

4.3    Effect Size Indices for Heterogeneous varian ces 
 

If one cannot assume that 1 2σ σ= , then there are various options for choosing 

the denominator of the index. 

 

4.3.1 Choice of any population SD 

 

The estimator 

               ( )1 2 11
ˆ x x / s ,∆ = −                                                                                (4.15) 

is an estimator for  

                   ( )1 1 2 1/µ µ σ∆ = −  .                                                                        (4.16) 

Similarly  

                    ( )2 1 2 2
ˆ x x / s∆ = −                                                                           (4.17) 

is an estimator for 

                     ( )2 1 2 2/µ µ σ∆ = − .                                                                      (4.18) 

These effect size index values can differ greatly if the values 1σ  and 2σ  differ 

greatly.   

The CI’s for 1∆  and  2∆  can be determined in a similar manner as was done for 

∆  by using the following quantity:  

( )
2

1 2 1

1 2 11 2 1

ˆn n
ˆ

n n n
σ ∆

+ ∆= +
−

 . 

 

Example 4.7 

(a)  Suppose that 1 2 5µ µ− =  and 1 220  5, ,σ σ= =  then 1 5 20 0 25 / ,∆ = =  and 

2 5 5 1 0 / ,∆ = =  which means that 1∆  is four times smaller than 2∆ .     
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(b) In Example B of Chapter 3, the J/P preference score would be  

1∆  = (91,08 – 70,07)/28,6 = 0,73.  

The value of 0,73 is slightly smaller than the value of 2∆  = 0,81 obtained if the 

lecturers were used as the reference point.                          

                                                                                                                              � 

There is no correct or incorrect choice between 1∆  and 2∆ , because it only 

depends on which population’s variance you use as your reference point.  It thus 

always best to report both values. 

 

 

 

4.3.2 Choice of the largest SD 

 

To be more consistent, one can decide to always divide by the largest variance 

(see also Steyn, 1999, 2000 and Ellis & Steyn, 2003), so that  

            ( ) ( )1 2 1 2m max/ min ,µ µ σ∆ = − = ∆ ∆  where ( )1 2max max , .σ σ σ=               (4.19) 

The following could then be used as an estimator:  

                    ( )1 2m max
ˆ x x / s∆ = −                                                                       (4.20) 

In Example 4.7(a) the value is 1 0 25m , ,∆ = ∆ =  because 1σ  is the largest of the 

two SDs, while in Example 4.7(b) the value is  1 0 73m ,∆ = ∆ =  because in that 

example 1σ =28,6 is greater than 2σ =25,93.        

 

4.3.3 Weighted SD 

 

When there are noteworthy differences between the population standard 

deviations, the square root of the weighted mean of the two variances can be 

used, i.e.,  
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                  1 2

2 2
1 1 2 2

g ,
W W

µ µδ
σ σ

−=
+

                                                                       (4.21) 

where 1 2 1W W .+ =  

 

The population sizes can be used to determine the weights, i.e., 

( )1 1 1 2W N / N N= +  and 2 11W W ,= −  where 1N  and 2N  are the population sizes.  If 

the weights are chosen to be equal ( )1 2 1 2W W /= = , then Cohen (1977:  44) 

provides a special case of (4.21) as the index, namely  

               1 2

2 2
1 2 2

c
( ) /

µ µδ
σ σ

−=
+

   .                                                                      (4.22)   

 

 

Example 4.8 : 

From Example B in Chapter 3, the results from Table B.1 are, 1W  = 254/(254+28) 

= 0,9  and 2W =0,1. The effect size indices for J/P are: 

 
2 2

91 08 70 07

0 9 28 6 0 1 25 93
g

, ,

, , , ,
δ −=

× + ×
 = 

21,01

736,16 67,24+
 = 21,01 / 28,34 = 0,74.  

This produces a slightly larger value than 1m∆ = ∆ . 

If we use Cohen’s equal weighted indices, then 
( )2 2

91 08 70 07

28 6 25 93 2
c

, ,

, , /
δ −=

+
                  

= 21,01 / 27,3 = 0,77, which is closer to value 2∆  = 0,8, where the lecturers are 

used as the reference point.                                                           �  

 

When gδ  is estimated from a sample, then we have  

                      ( ) 2 2
1 2 1 1 2 2g

ˆ x x / W s W s .δ = − +                                                       (4.23)  

If population sizes are unknown, or if it is difficult to obtain weights, the following 

estimator can be used 

                        ( ) ( )2 21
1 2 1 22c

ˆ x x / s sδ = − + .                                                      (4.24) 
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Alternatively, one can also use m∆̂  found in equation (4.20).  Both of these 

estimators are biased for g .δ   Steyn (1999) found, through the use of simulation 

studies, that m∆̂  underestimates gδ , but by no more than 0,08 if 0 5g ,δ =  and 

2 1 2 1 210,  1,5 2n n n σ σ> ≤ <   and  . With the same restrictions on 1 2 1 2, ,n n σ σ and , the 

estimator m∆̂  will underestimate gδ  by no more than 0,13 if 0 8g ,δ = . 

 

Example 4.9 :  

 Suppose that, in Example 4.1, the sample sizes are proportional to the 

population sizes, so that 1
1 3100 300W /= =  and 2

2 3W .=   If one can assume 

1 2,σ σ≠  then the following index can be used as an estimator for gδ : 

( ) 2 21 2
3 3111 105 10 12

     =6/ 33,33+96 0 527

g
ˆ /

,

δ = − × + ×

=
 

With no knowledge of 1W  and 2W , the indices  

( )2 21
26 10 12 6 122 0 543c

ˆ / / ,δ = + = =  or 6 12 0 5m
ˆ / ,∆ = =  serve as conservative 

estimators.    

                                                                                                                       � 

4.4 Effect size indices for dependent groups   
 
Suppose that similar measurements are obtained from the same individuals at 

different points in time.  These groups of measurements are then dependent and 

are usually obtained when some or other treatment or intervention is applied 

between measurement times.  It is thus important to be able to measure the 

effect of the intervention. 

 

Example 4.10 : 

Using the results from Example A in Chapter 3, the following table shows the 

descriptive statistics of POMS depressions before and after therapy of the n=25 

heart patients in the experimental group: 
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      Before                             After                            Difference 

  1x           1s                  2x                   2s                 Dx               Ds          t             p 

18,00     12,26           8,08               9,84             9,92         13,38     3,71   0,001    

                                                                                                                              � 

 

The difference in the mean of the difference between the scores after and before 

a test, 1 2x x− , namely, Dx , for the sample data, as in Example 4.10, should be 

able to reveal the effect of the therapy. However, to obtain an effect size index 

from this quantity, we need to divide it by some standard deviation. 

 

The population index is thus 

              *
D D / ,δ µ σ=                                                                                       (4.25) 

where Dµ  is the mean of the population distribution of the differences and *σ  is 

defined at the beginning of this chapter.  Choosing 1 2
*σ σ σ= =  makes the 

assumption that the standard deviations are equal at each measurement 

opportunity.  Usually, if a baseline initial measurement is made and then a follow-

up measurement is made after the intervention is applied, then this assumption is 

not very realistic.  A more appropriate choice would be to simply make use of 1σ  

because it represents a sort of reference variation (i.e., the base line or before 

test variation) (see Kline, 2004a:  105).  This produces the following index 

                   1D D / ,µ σ∆ =                                                                                  (4.26) 

and associated estimator  

                    1D D
ˆ x / s ,∆ =                                                                                  (4.27) 

which is known as “Becker’s g”. 

 

A second possibility is to select the SD as D ,σ σ∗ =  i.e., the SD of the population 

distribution of differences.  Usually Dσ  is a great deal smaller than either 1σ  or 
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2σ , especially if there is a high correlation between the two measurements.  This 

produces the effect size index  

D D D/δ µ σ=                                                                                                     (4.28) 

with associated estimator 

D D D
ˆ x / sδ = .                                                                                                  (4.29) 

This estimator is, similarly to the independent group case with δ̂ , a biased 

estimator for Dδ .  According to Hedges & Olkin (1985: 79) the estimator 

 
3

1
4 5D,a D

ˆ ˆ
n

δ δ = − − 
,                                                                                     (4.30) 

is a modified estimator which should be used, particularly if n is small.  

 

The problem with these indices is that Dσ  (and Ds ) no longer express the 

variation of the scale of the original measurements made at each measurement 

opportunity, but rather the variation of the differences between the measurement 

opportunities.  Cumming & Finch, (2001:  569 – 570) discuss the following 

example, where Dδ  is compared to the index  

              D D' /δ µ σ= ,                                                                                     (4.31) 

(where it is assumed that 1 2σ σ σ= = ), and with associated estimator  

              D PD
ˆ ' x / s ,δ =                                                                                      (4.32) 

where  

( )2 21
1 22Ps s s= +                                                                                     (4.33) 

is used as an estimator for σ . 

 

Example 4.11  ( Cohen ,1988:  49):   

In a verbal ability test, it is known that 100µ =  and =15σ .  Suppose that the 

effect of a healthy breakfast is determined by comparing the verbal capabilities of 

a group of children before given a healthy breakfast and then, later, given a 

healthy breakfast.  The mean difference between the two opportunities is 4,1 in 
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favour of the test after the healthy breakfast, while the standard deviation of the 

difference of the scores was 7,7.  The estimated effect sizes are: 

       4 1 7 7 0 53D
ˆ , / , ,δ = =  while 4 1 15 0 27D , / , .δ = ='  

(where we use 15σ =  because it is known).   

 

In terms of the original scale on which the verbal ability is measurement, the 

index is approximately half of what it is when we consider it in terms of the 

variation of the difference measurements.  

From Example 4.10 we find that 9 92 13 38 0 74D
ˆ , / , ,δ = =  and 

,

3ˆ (1 )0,74 0,72.
4 25 5D aδ = − =

× −
 Further, we find that 

2 2

9,92ˆ '
(12,26 9,84 ) / 2

Dδ =
+

 = 

9,92 / 11.12 = 0,89. Here the opposite to (a) above is true: the variation of 

differences between the differences of the before and after measurements is 

larger that the variation on the original scale, i.e., ˆ ˆ'D Dδ δ> .  This occurrence of 

larger variation with differences can be attributed to a weak correlation between 

the before and after measurements (in this case it was 0,28).  In this case it 

appears as though the before and after measurement’s SDs differ, and so it is 

reasonable to say that D∆  is the proper index to be used. This index can then be 

estimated by ˆ
D∆ =9,92 / 12,26 = 0,81. If the original scale is used as a basis, then 

D∆  would be the recommended index, rather than 'Dδ . 

 

Discussion:  

The following is a list of recommendations: 

• If there is an indication that the variation is larger (or smaller) for the two 

measurements (caused by the intervention):  use D∆  and D∆̂ . 

• If homogeneity of variances can be assumed and if you want to use the 

variation of the of the original measurements as a basis: use 'Dδ  and D
ˆ 'δ . 

• In all other cases, use Dδ  and D,aδ̂ . 
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The estimator D,aδ̂  is the only unbiased estimator.  If n is small, one should keep 

in mind that the estimators ˆ
D∆  and ˆ 'Dδ  can overestimate or underestimate the 

parameters D∆  and 'Dδ . 

 

Note:  

 The effect size indices D∆  and 'Dδ   are used and calculated in precisely the 

same way as ∆  and δ  for the independent groups, except that they are based 

on difference measurements.  If one wants to calculate ˆ 'Dδ   from the t-statistic, 

then formula (4.5) is not the correct one to use, but one should rather make use 

of (Kline, 2004a: 107): 

                     ( )
2

2 2
1 2

2 D
D D

sˆ ' t ,
n s s

δ =
+

                                                                   (4.34) 

where Dt  is the dependent groups t-statistic . 

 

4.4.1    Confidence intervals for Dδ  and '
Dδ   

 

As per Johnson et. al. (1995: 513), the asymptotic variance of D,aδ̂  is given by: 

          2 21
(1+ )

D ,a D,a
ˆˆ

nδσ δ= ½ ,                                                                               (4.35) 

so that the ( )100 1 α− % CI for Dδ  can be expressed using the following lower and 

upper bounds: 

          
D ,aD,L D,a / z

ˆ ˆzα δδ δ σ= −  

          
D ,aD,U D,a / z

ˆ ˆzα δδ δ σ= +  .                                                                            (4.36) 

For D'δ  Kline (2004a) provides the asymptotic variance of D
ˆ 'δ  as : 

            
( )

( )
2

2 122 1

2 1D

D
'

ˆr '
ˆ

n nδ
δσ

−
= +

−
                                                                    (4.37) 

where 12r  is the correlation coefficient between 1x  and 2x . The ( )100 1 α− % CI  
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for 'Dδ  can then be expressed using the following lower and upper bounds: 

             
2

2

D

D

D,L D / '

D,U D / '

ˆ ˆ' ' z

ˆ ˆ ˆ' ' z

α δ

α δ

δ δ σ

δ δ σ

= −

= +
                                                                            (4.38) 

Note that the CI’s in (4.36) and (4.38) are only approximations and only hold 

when n is reasonably large (say, 30n > ). 

 

As in paragraph 4.1.2, there is also an exact CI for Dδ  which can be constructed 

under the assumption of a normally distributed population. This interval is 

constructed by using the fact that the statistic D D

D

x

s / n

µ−
 follows a non-central t-

distribution with v=n-1 degrees of freedom and non-centrality parameter Dnδ .  

See Appendix A for more details concerning the method used. Computer 

programs (for example, the CIdeltaNET program of ESCI-software or the SAS-

program named VI_delta_D) are available on the webpage to perform these 

calculations.  Algina & Keselman (2003) showed, with the help of simulations, 

that these CI’s produce the correct coverage probability for Dδ  =0,0 ,  0,2  , 0,4  ,  

…  1,6  and  ρ =0,0 ,  0,2  , 0,4  ,  …  0,8 (where ρ  is the correlation between 

the two dependent measurements). 

 

From (4.34) it is easy to see that D
ˆ 'δ  also depends on 1s  and 2s , meaning that its 

distribution can not be expressed in terms of the non-central t-distribution, but is 

actually much more complicated.  It is for this reason that it is sufficient to use the 

previous approximate CI’s for 'Dδ .  

 

Example 4.12 : 

Continuing with Example 4.11 we find 

          
D ,a

ˆ δσ =  0,72, 

so that  2 1
(1+ ) = 0,0504,

25D ,a
ˆ δσ = × 20,72½ and 
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          0 72 1 96 0 05 0 28D,L , , , ,δ = − =  

and 

          0 72 1 96 0 05 116D,U , , , ,δ = + = . 

The exact 95% CI is:  (0,292 ; 1,180). The approximate CI for Dδ  does not differ 

greatly from this exact CI, even for n= 25, which is not very big. 

Further, 
( ) 2

2 2 1 0 28 0 89
0 074

25 2 24D'

, ,
ˆ , ,δσ

−
= + =

×
 

so that 

               0 89 1 96 0 074 0 359D,O' , , , ,δ = − × =  

and           0 89 1 96 0 074 1 423D,B' , , , , .δ = + × =         

                

 

4.5   Counternull values for other effect sizes use d to compare two means  

 

As already shown, ˆ2δ   is only the approximate counternull value for δ̂  because 

the standard error of δ̂  is a function of δ . This is also true for all the other effect 

sizes, viz. 1 2 ,
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, , , , , , , , ,a m g c D D D aδ δ δ δ δ∆ ∆ ∆ ∆ ∆   and ˆ 'Dδ . 

 

This approximation reasonable if the sample size is large or if the value δ  is 

small. 

                                � 

 

4.6 Guidelines for effect size indices based on sta ndardized differences 

 

The first question that comes up after an effect size index is calculated is “when 

can it be considered to be large and when is it considered to be small?”  Cohen 

(1969, 1977, 1988) provides the following guidelines δ  (his ‘d’): 

• 0 2,δ =   :  small effect size 
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• 0 5,δ =   :  medium effect size  

• 0 8,δ =   :  large effect size. 

Notes: 

Note that if δ  is negative, the sign is ignored when applying these guidelines. 

The quantity δ  is defined as ( )1 2 /δ µ µ σ= −  and as such the sign of δ  becomes 

negative if 1µ  < 2µ . Therefore, the direction of the effect can be determined by 

looking at the sign.  If one is not interested in the direction, one can always 

calculate δ  by subtracting the smallest mean from the largest one.  

 

These guidelines are also applicable for the indices 1 2 m g D D      , , , , , ,δ δ∆ ∆ ∆ ∆ ∆  and 

D'δ  as well as their estimators. 

Cohen (1969, 1977, 1988) provide further interpretation of a standardized 

difference in terms of the overlap between two populations.  

Consider the simple case where we have two normally distributed populations A 

and B with different means, Aµ  and Bµ , but with common variance 2σ .  The 

effect size used to compare Aµ  and Bµ  is 

 

                                        B Aµ µδ
σ
−= . 

 
Cohen defines the overlapping proportion 2U  as the proportion of population B 

that exceeds the midpoint between the population means of the two populations 

(which is equivalent to the proportion of population A less than this midpoint 

value). The following graph illustrates this concept when, without loss of 

generality, the population means of populations A and B are taken to be equal to 

0 and δ  respectively.   
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In terms of δ -units we compare the distributions N(0;1) and N ( ),1δ , and it 

follows that 2

1

2
U P Z δ = ≤ 

 
. 

The probability of a misclassification is  

2

1
1

2
 = − = > 
 

MCP U P Z δ                                                                                 (4.39) 

 

Cohen attaches the following interpretations to his guidelines (with examples): 

 

4.6.1 Small effect  

 

This occurs in new research areas where measurements are done without any 

sort of proper experimental controls which can cancel out the effect of 

background variables.  The differences in the means are therefore small relative 

to the error variation (0,2 or even smaller).  Examples include the difference in 

mean IQs of twins and non-twins, the difference in mean height of girls aged 15 

and 16 (12,5mm, where 53 3,σ = mm). Here the probability of misclassification 

( MCP ) is 0,46. 

 

4.6.2  Medium effect 

   

This is large enough to be identifiable by inspection. Depending on the context, 

these differences can be classified as either small or large.  Examples include 
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the difference in the mean IQ of clerical employees and semi-educated 

employees, the difference between the mean heights f 14 and 18 year old girls 

(25mm, with 51σ = mm).  MCP  is here 0,41. 

 

4.6.2  Large effect 

 

It is an important difference and agrees with what is generally considered to be a 

definite difference.  Examples include the difference in mean IQs of people with a 

PhD degree and first year students, or the difference between the mean height of 

13 and 18 year old girls.  Cohen warns that terms “small”, “medium” and “large” 

are relative, not only with respect to one another, but also to the field of research 

it is applied. Feinstein(1999:2569) – contemplates this motivation  further in 

paragraph 5.1.2 – and Fleiss(1981) provides the boundary 0,6 as a practical cut-

off point for the effect size index δ , which was also confirmed through empirical 

studies by Burnand et. al. (1990). Here MCP = 0,34 , the misclassification 

probability. 

 

 

 It is a good idea to consider the following warnings before making use of these 

guidelines: 

 

4.6.4    Warnings (Kline, 2004a:  132) 

 

1.     These guidelines were not obtained using empirical techniques.  It is for this 

reason that Cohen states these warnings. 

2.     The values 0,2 for “small”, 0,5 for “medium” and 0,8 for “large” should not be 

applied too strictly. For example, values of 0,49 and 0,51 should not taken as 

“small” and “medium” by using 0,5 as a cut-off point, but rather both should be 

classified as “medium”, by using a cut-off in the region  of 0,5.  This is why we 

call the values 0,2, 0,5 and 0,8 guidelines. 
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3.     As Cohen warns, the definition of the sizes does not always hold in all 

research areas.  That which is considered to be a large effect in one research 

field might not be considered large in another field of research. 

4.     Cohen’s guidelines might be more appropriate in non-experimental studies, 

while in studies which make use of experimental designs, the error variation 

should be smaller, so that larger guidelines might be more relevant. 

5.     In established research areas, meta-analysis can be used to systematically 

distinguish between small and large effect sizes and this information should be 

used to serve as guidelines.  Only in newer fields, where very little is published, 

would Cohen’s guidelines be used. 

6.     A major advantage of reporting of effect sizes is that they can be compared 

to results from previous studies and not to rely too much on the arbitrary 

guidelines proposed by Cohen. 

 

 

4.7    Practical Significance 

 

The question is now:  “When is the effect size index’s value substantial, 

significant or important?”  We use these terms to refer to practical significance so 

that it can be distinguished from significance in a statistical sense (i.e., when the 

null hypothesis is rejected).  This question requires proficiency in the specific 

research context. Kline (2004a: 134) uses an example involving the difference in 

the mean height of men and women. In this situation a δ -value of 2 can be 

obtained without being an important difference to, say, a physiologist. However, 

the value of 2 might be critically important in another situation involving, say, 

motor vehicle safety where air-bags installed in cars are investigated to see if 

they could introduce a greater risk for women than for men when compared to 

older car models. 
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In earlier phases of research, larger values of the indices can more easily occur 

than during later stages – which can also influence the determination of practical 

significance. 

 

One part of the challenge inherent in any new research fields is trying to 

determine the standards which must be used for practical significance. 

 

The term clinical significance is also applicable here.  According to Kline (2004a: 

135) this term refers to the case where a intervention makes a reasonable 

difference.  For multiple groups a criterion contrast is one way to standardize this 

significance.  It represents a known difference in the response variable in which 

we are interested like, for example, between those patients with the same 

disease, but exhibit the worst symptoms, versus those patients who exhibit only 

lesser symptoms.  If a criterion contrast is, say, 0,8 before any treatments are 

applied and the effect size after a treatment is 0,4, then it means that the 

treatment’s effect is half of the distance between the patients with the worst 

symptoms and the patients exhibiting lesser symptoms.  This can be clinically 

significant even if it is not statistically significant, and vice versa.  

 

According to Kirk (1996), the evaluation of practical significance is a qualitative 

decision because it relies on the researcher’s knowledge of the research area 

without reflecting any of the researcher’s personal or social values.  

 

Consequently, the results of each of the examples in this chapter are reported 

with the interpretation with respect to the guidelines and practical significance.  

 

1.    In Example 4.2 the values of δ  in both cases of the differences of the mean 

IQs and diastolic blood pressure was 0,6.  According to Cohen’s guidelines, this 

is a medium effect.  The psychologist could argue that, since both population 

means lie above the average of 100 and only differ by 6 scale points, the 

difference is not important.  The effect of lowering the blood pressure might, from 
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a biokineticist’s experience, be enough to indicate that a successful exercise 

program. 

2.    In Example 4.3 where 1 2 5n n= = , the estimated effect size was 0 72a
ˆ ,δ = .  

We could judge that it would be a large effect, because it is almost 0,8 and 

therefore practically significant.  We should rather look at the 95% CI which was 

(-0,523 ; 2,072), since it is safer to say that δ  could be as high as 2,07 but also 

as low as -0,52 (with 95% probability).  The difference could even be the 

opposite sign to what was originally expected, and this difference could have a 

medium effect!.  When 1 2 30n n= = , the CI is (0,271 ; 1,324), which still provides 

some indication of a small to a large effect. 

3.    In Example 4.11 the estimated effect sizes are =0,89D
ˆ 'δ  and  0 74D

ˆ ,δ = . 

In terms of the original scale of the depression scale, this indicates a large effect 

which could in turn indicate a practically significant decrease after the 

intervention.  We rather look at the effect size where the difference scale was 

used as the basis, and in this case it tends towards a medium effect.  The 95% 

CI for D'δ  : (0,359 ; 1,423)  indicates a medium to large effect, if Cohen’s 

guidelines are used, while the CI for Dδ , namely (0,292 ; 1,180), makes us wary 

to even speak of a medium effect. 

 

 

 
 

 


