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CHAPTER 6 
Comparison of more than two groups of observations 

 
 

In Chapter 4 effect size indices are discussed for the differences between the 

means of two groups of measurements (both independent and dependent).  In 

the case where an experimental design or study consists of more than two 

groups of measurements then there are two types of effects which can be of 

interest and for which effect size indices serve as measures.  The first is the so 

called omnibus effect which attempts to determine if at least two of the groups’ 

measurements’ means differ and also the extent of this difference. The second is 

the contrast effect which compares the means of the measurements of specific 

groups or combinations of groups. 

 

Example 6.1:  

 In Example A of Chapter 3 we found that there were 3 groups of measurements:  

before tests, after tests and follow-up tests.  An omnibus effect allows us to 

establish if there are any differences between, for example, the mean BDI-

measurements of the before, after and follow-up tests.   A contrast could be 

something like, B Ax x ,−  i.e., the difference between the means of the before test 

and the after test.  Another example of a contrast is ( )1
2B A Fx x x ,− +   where Fx  

is the mean of the follow-up test.  In this case the average of the means of the 

after and follow-up tests is compared to the before test’s mean.                                          

□ 

 

Note:  

Note that in the above discussion the term group of measurements is a more 

general term than, say, a group of people, and it can refer to a population or 

sample of these elements.  Groups of measurements can be independent, which 

means that the measurements on the groups/populations/samples of elements 

are separate from one another. We make this distinction because we may find 
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that the measurements can be dependent measurements on the same element 

in each population or sample.  Example 6.1 illustrates this, because the  before, 

after and follow-up measurements are each conducted on a single heart bypass 

patient and are thus dependent. 

 

6.1    Indices for omnibus effects for independent measurements 

 

An obvious extension of Cohen’s δ  to more than two groups, would be (Cohen, 

1969, 1977, 1988): 

                                                   max min
omn

µ µ
δ

σ

−=   ,                                      (6.1) 

where maxµ  and minµ  are the largest and smallest means of the groups 

respectively and σ  is the common SD of all of the groups. 

 

With one-way analysis of variance (ANOVA) in mind, Cohen suggests the index 

f , defined as: 

              µσf
σ

=  ,                                                                                             (6.2) 

where 

              ( )22
i

1

1 k

µ

i

σ µ µ ,
k =

= −∑                                                                             (6.3) 

is the variance of the iµ ' s ,  

with        k     the number of groups; 

              iµ     the mean of the i − th group; 

              µ     the mean of all of the iµ ' s , 

and assuming that all of the groups are of equal size.  

Suppose that 2
tσ  is the total variance of all of the measurements over the groups, 

then for equal group sizes and equal variances we have that: 

                                  2 2 2
t µσ σ σ= +                                                                     (6.4) 
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A sensible effect size index can then be the proportion of the total variance, 

which can be attributed to 2
tσ : 

                                  
2

2
2 2
µ

µ

σ
η

σ σ
=

+
    .                                                              (6.5) 

This is Pearson’s eta-squared and is related to f  (from (6.2) and (6.4)) as 

follows: 

                                  
2

2
21

f
η

f
=

+
                                                                     (6.6) 

The index 2η  , and its estimators, has found greater utility as an omnibus effect 

size index in practical situations than either omnδ  or f .  Consequently, we will not 

concentrate any further these other indices. 

 

6.1.1 Estimation of 2η :    

Some notation regarding the one-way ANOVA will first be provided before we 

continue any further (for more details consult Steyn et al., 1998:  511-513). 

           GSS      :      between groups sum of squares, 

           ESS      :      within groups (error) sum of squares, 

           totSS     :      total sum of squares. 

 

If the measurements are obtained from random sampling, then a biased 

estimator for 2η  is: 

                          2 = G

tot

SS
η

SS
�   ,                                                                           (6.7) 

which underestimates 2η . This bias is expressed by Fowler (1985) as: 

                          2 2 2(1 ) (1 )(1 2 ) /k nη η η − − − +  . 
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Hays’s estimator 2ω̂  (see Fidler & Thompson, 2001: 585) is a modification of 2η�  

and is given by: 

                           
( ) ( )

( )
2 1G E

tot E

SS k SS / n k
ω̂

SS SS / n k

− − −
=

+ −
,                                         ( 6.8) 

where n is the total number of measurements in all of the k  groups. 

 

Notes: 

1)    While 2ω̂  is a modified estimator used to limit the influence of the bias, an 

unfortunate downside is that this estimator can now take on negative values.  

This can occur if the following variance ratio is less than 1, i.e.,                                             

( )
( )

G

F

SS / k 1
F 1

SS / n k

−
= <

−
,                                                       (6.9) 

which is usually only the case if the hypothesis 0 1 2 kH : µ µ ... µ= = =  can not be 

rejected, which is, in turn, linked to small values of 2η .  In these cases we let 

2 0ω̂ = , because 2 0η >  can not be estimated by a negative value. 

 

2)    The estimator 2ω̂  is the ANOVA analogue of 2
aR , the adjusted 2R  defined in 

paragraph 5.2.5, while 2ω̂  described  in paragraph 5.3.2 is a special case with 

2.k =  

 

3) We can express 2ω̂  in terms of the variance ratio, F , as  

                    2 1

+
1

F
ω̂

n-k
F

k-

−=  ,                                                                           (6.10) 

which is generalized in equation (5.39) in paragraph 5.3.3. 

 

 4) According to Carroll & Nordholm (1975) 2ω̂  is an estimator for 
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2(1/n) n (µ -µ)i i2 iω =
2 2σ + (1/n) n (µ -µ)i i

i

∑

∑

 ,    (6.11) 

where i in N
n N

= , i.e. that in  is eweredig is aan die populasiegrootte iN .  Let op 

dat dit na 2η  herlei as die in ’s gelyk is ( en dus die iN ’s ook gelyk). 

5)   Strictly speaking, 2ω̂  is not unbiased for 2η , but the following estimator is 

(Hays, 1973:486): 

                
( ) ( )

( ) ( ) ( ) ( )
2 2 1

2

n k F / n k
η̂

n k F / n k n k / k 1

− − − −
=

− − − + − −
                                 (6.12) 

 

Example 6.2: 

Consider Example D in Chapter 3.  Here 3k = , 444n = , 67,47GSS = , 

ESS 854,49= , totSS 921,96=  and 17,41F = . 

              2 67,74
= 0,0735

921,96
η =�  

         2 67,74 - 2×854,49/441 67,74 -3,88 63,86
= = =

921,96 +854,49/441 921,96 +1,94 923,90
ω̂  

                                                                               = 0,0690. 

This quantity is easier to calculate if we use equation (6.10): 

                       2 17,41-1 16,41
= = 0,0690

441 237,9117,41+
2

ω̂ =  

From equation (6.11) the estimator is: 
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                2 439×17,41/441-1 17,33-1
= 0,0687

439×17,41/441+ 441/2 17,33+ 220,5
η̂ = = . 

Clearly 2η�  produces a slightly higher value since it over estimates 2η .  The 

estimated values obtained from 2ω̂  and 2η̂  are, for practical purposes, the same. 

□ 

 

6.1.2    Confidence intervals for 2η   

 

Under the assumption that random samples are drawn from normal populations, 

Fowler (1985) provides an approximate ( )100 1 α %−  CI for 2η  derived from the 

Laubscher-approximatione of the non-central F  distribution. Fowler showed, 

through the use of simulation studies, that these intervals yield the correct 

coverage probabilities for 2, 4 or 8 groups each with 5, 10 or 20 observations per 

group.  The variance-ratio F  then follows a non-central F - distribution with 1k −  

and n - k degrees of freedom and non-centrality parameter ( )2 2
Fncp nη / 1 η= − .  

As before, a CI for ncp will first be constructed. The boundaries of this interval 

are: 

      ( ) ( ) ( )21
2 2 1FL α α

2 2
ncp wx z x c k c z wx x c = + + − − + − +

  
                      

and                                                                                                           (6.13) 

      ( ) ( ) ( )21
2 2 1FU α α

2 2
ncp wx z x c k c z wx x c = + + − − + + +

  
 

where     ( )2 1n kw − −=  

              ( ) ( )1x k F / n k−= −  

              ( ) ( )1 2 1c k nx / k nx− + − += . 

The approximate CI-boundaries for 2η  then follow from the definition of Fncp  

and are given by: 
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            ( )2
L,approx FL FLη ncp / ncp n= +              

and                                                                                                                  (6.14) 

            ( )2
U,approx FU FUη ncp / ncp n= +  

One can also construct an exact ( )100 1 %− ±  CI, ( )2 2
L Uη ;η , by making use of the 

SAS-program 2VI _ R  which was already discussed in paragraph 5.2.5. The 

inputs for this function are 1u k  , n= −  and F .  The program also calculates the 

estimators 2η�  and 2η̂  (as 2R  and 2R a). 

 

 

 

Example 6.3: 

Consider Example 6.2. To determine the 95% CI for 2η , first calculate  

        ( ) ( )

2×441-1 = 883

×17,41/441 = 0,079

3-1+ 2×444×0,079 3-1+ 444×0,079

72,113/37,057 = 2,057

w

x 2

c /

   =

=
=
=

 

 

        ( )21
2 883×0,079 +1,96 0,079 + 2,057 - 2× 2 + 2,057FLncp  =         

( )1,96 883×0,079 0,079 + 2,057−  

                     

[ ]1
2= 69,757 + 8,206 - 6,057 - 23,925

= 35,953- 23,925

= 12,028

 

           
35,953+ 23,925

          = 59,878
FUncp =

 

            ( )2 12,028 12,028 + 444 0,026L,approxη /= =  

            ( )2 59,878 59,878 + 444 0,119U ,approxη /= = . 
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The exact 95% CI for Fncp  obtained from the 2_R VI  program is 

( )14,387 ;61,194, while the CI for 2η  is:  ( )0,032 ; 0,121. 

 

It would appear that the exact interval produces slightly higher values for both the 

lower and upper bounds of the interval.      □ 

 

 

6.1.3  Comparing more than two proportions 

 

As in the case with the differences in proportions discussed in paragraph 5.4.4, 

proportions can be treated as means and the effect sizes can be calculated as in 

previous paragraphs. Let 

 

and 

. 

Let iN  and in  denote the population and sample sizes respectively, and the 

analysis of variance (ANOVA) tables for ijy  and ijY   are given by (a) and (b) 

below (D’Agostino, 1972): 

 

 Source of  

variation 

Sum of Squares Degrees of 

freedom 

Mean Sum of 

Squares 

a) Between 

populations 
2( )i i

i

N aπ π− =∑  - - 

 Within populations 
(1 )i i i

i

N bπ π− =∑  - - 

 Total (1 )N Ncπ π− =  - - 
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b) Between samples 

 
2( )i i

i

n p p A− =∑  
1k −  

1

A

k −
 

 Within samples 
(1 )i i i

i

n p p B− =∑  
n k−  B

n k−
 

 Total (1 )np p nC− =  1n−   

 

Here 
1

i ij
ji

y
N

π = ∑ , denotes the i-th population proportion, while 
1

i ij
ji

p Y
n

= ∑ , 

denotes the i-th sample proportion.  Further, let 
1

i i
i

N
N

π π= ∑  and 
1

i i
i

p n p
n

= ∑ , 

where i
i

N N=∑  and i
i

n n=∑ . 

From (6.7), the “weighted” effect size for the equality of k unequal sized 

populations’ proportions is: 

2

2

( )

(1 )

i i
i

pw

N
a

Nc N

π π
η

π π

−
= =

−

∑
                                                                                        (6.15) 

                                

 

If 1 2 .... kN N N= = = , then the unweighted value becomes  

2

2

1
( )

(1 )

i
i

p

k
π π

η
π π

−
=

−

∑
,                                                                                                (6.16)      

                                           

 

which is the proportion analogue of 2η  in (6.5). 

 

The sample effect size is, according to the ANOVA table (b), given by 



10 
 

2

2

( )

(1 )

i i
i

P

n p p
A

nC np p
η

−
= =

−

∑
�                                                                                           (6.17) 

This is the analogue of (6.7) and 2
pη  is overestimated. 

The ratio of variances obtained from ANOVA table (b) in terms of proportions 

becomes: 

2( )
11

(1 )

i i

i
P

i i i

i

n p pA
kkF

B n p p
n k n k

−
−−= =
−

− −

∑

∑
 .                                                                                   (6.18) 

                                               

For large samples pF has an approximate non-central 1,k n kF − − -distribution with 

non-centrality 
2

21
p

p

nη
η−

. Consequently it is an unbiased estimator for 2
pη  from 

(6.12): 

2

( 2)
1

ˆ
( 2)

1

p

p
p

n k F

n k
n k F n k

n k k

η

− −
−

−= − − −+
− −

.                                                                                        (6.19) 

  

 

                                    

Remarks: 

The k populations’ proportions can be obtained from the following 2 x k -

contingency table: 

 Populations 

 1   2 ........................k 

Positive 
1 1N π    2 2N π ................... k kN π  

Negative 
1 1(1 )N π−   2 2(1 )N π− ........... (1 )k kN π−  

 

According to D’Agostino (1972) the chi-squared statistics then becomes  
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2

2 2

( )

(1 )

i i
i

pw

N
a

x N
c

π π
η

π π

−
= = =

−

∑
.                                                                               (6.20) 

The sample analogue is then: 

2

2 2

( )

(1 )

i i
i

p

n p p
A

X n
C p p

η
−

= = =
−

∑
� .                                                                                (6.21) 

 

 From these results it follows that 2
pwη  and 2

pη�   are the same as 2w  for a (2 x k)-

contingency table.  In the case where equal population sizes are used, then 2ˆ
pη  

can be used as an unbiased estimator for 2w . 

 

Example 6.4 (Cohen, 1969: 219): 

The following proportional grouping is made with respect to the gender and 

political preference in America: 

 Democrat  Republican Independent Gender 

proportions 

Male 0,22 0,35 0,03 0,60 

Female 0,23 0,10 0,07 0,40 

Preference 

proportions 
0,45 0,45 0,10 1,00 

 

In order to calculate the effect sizes 2
pwη , let 1 2,π π  and 3π  denote the proportion 

of men affiliated with each party and, without loss of generality, let 1 45N = , 

2 45N = , 3 10N =  and 100N = . 

Now, because 1

0,22
0,489

0,45
π = = , 2

0,35
0,778

0,45
π = =  and 3 0,3π = , we have that            

0,45 0,489 0,45 0,778 0,10 0,30 0,6π = × + × + × =  (= proportion men). 

2 2 2
2 45(0,489 0,6) 45(0,778 0,6) 10(0,3 0,6)

100 0,6 0,4pwη − + − + −=
× ×
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2,88
0,12

24
= = , 

while                  2 0,346pww η= =  . 

Note that if equal weights (population sizes) are used for each party then we 

would have 
1

(0,489 0,778 0,3) 0,522,
3

π = + + =  so that 

2 2 2
2 (0,489 0,522) (0,778 0,522) (0,3 0,522)

0,522 0,478pη − + − + −=
×

 

0,116
0,465

0,250
= = ,      0,682w = . 

. 

This differs greatly from the value of 2
pwη . 

 
 

6.1.4    Guideline values for the omnibus effect 2η  

 

Cohen (1969, 1977, 1988)’s finds that from omnδ  in (6.1) it follows that, if 2k = , 

then omnδ δ=  (defined in Chapter 4) and ( )1
1 22µσ µ µ= −  so that 

                1
2f δ= .                                                                                           (6.22) 

 

This relationship allows us to state that the values 0,1 ; 0,25 and 0,4 can be 

seen as small, medium and large effects for f .  The values are derived from 

0,2δ =  ; 0,5 and 0,8.  By making use of the relationships between 2η  and f  in 

(6.6) Cohen offers the following convenient guideline values for 2η : 

• Small effect         :     2 0,01η =  

• Medium effect    :     2 0,06η =  

• Large effect       :      2 0,14η = . 

 



13 
 

These values were only obtained for the proportion variance of population 

membership in the case involving only 2 populations. Cohen attempts to provide 

a motivation for why it might also be applicable for 2k >  populations.  He 

considers three different patterns which describe the variation of the means 

1 2 kµ ,µ ....,µ  over the interval ( )1 1
2 2σδ;  σδ− : 

 

Pattern 1: 
                   1

2σδ−                                   0                                  1
2σδ  

 
                     •                                   2µ   •                                          •  

                    1µ                                         •                                         kµ  

                                                                ⋅  
                                                          1k-µ •  
 
Pattern 2: 
       
                     •       •        •       •       •       •       •       •      •       •      •  
                    1µ      2µ ……………………………………………… 1k-µ   kµ  
 
Pattern 3: 
                         
                     • 1µ                                                                           kµ •  

                     • 2µ                                                                         1k-µ •  

                     ⋅                                                                                     ⋅  
                     ⋅                                                                                     ⋅  
                     •  / 2kµ                                                                   / 2 1kµ +  •  
 
 
Note that pattern 1 reflects the smallest variation of µ ’s, and that pattern 3 

reflects the largest (assuming that k  is an even number, so that half of the µ ’s 

lie each of the two end points of the interval).  Pattern 2 displays the situation 

where µ ’s are equally spaced, meaning that the variation in this case lies 

midway between the variation found in patterns 1 and 3. 

 

For each of the patterns the quantity f  (and consequently 2η  as well) can be 

expressed as a different function of δ  and k . Table 6.1 lists these different 
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expressions, as well as expressions of δ  in terms of f . Examples of these 

expressions are also provided for 2k =  and 8 : 

 

Table  6.1 

                                                 f                                                  δ  

Pattern          general       2k =           8k =               general     2k =         8k =  

     1                
1

2
δ

k
            0,5δ           0,25δ        2f k            2 f            4 f  

     2               ( )
+1

2 3 1

δ k

k −
    0,5δ           0,33δ      

( )3 1
2

+1

k
f

k

−
  2 f          3,06f  

     3                
1

2
δ                  0,5δ           0,5δ           2 f              2 f              2 f  

 
 
Note that for 2k =  the expressions for each of the three patterns are identical 

and δ  is the standardized difference in means as discussed in Chapter 4. 

 

6.1.5   Motivation for the guideline values proposed by Cohen 

 

1. Small effect (((( ))))20,1 0,01f η  ;  = == == == = :  In this case the SD of the means is 

one tenth of the SD of the original measurements within the population.  For 

pattern 1 and 2k = . This agrees with the value 0,2δ = , while for 8k =  it agrees 

with 0,4δ = .   For 2k =  we get 0,306δ =  for pattern 2 and 0,2δ =  for pattern 3.  

Pattern 3, which has the largest variation in the µ ’s of the three patterns, 

produces the same value at 8k =  and 2k = , i.e., 0,2δ =  , which is considered a 

small effect.  When the variation is smallest (as in pattern 1) the value of δ  can 

become much larger, e.g., 0,4δ =  when 8k = .  This result follows from the fact 

that only two mean values lie away from the rest of the mean values and 

provision must be made for the possibility of widening the interval on which the 
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µ ’s vary.  In terms of 2η , this means that the proportion variance ascribed to 

population membership is only 1%. 

 

2.  Medium effect  (((( ))))20,25 0,06f η  ;  = == == == = :  For 2k = , and pattern 3, this agrees 

with 0,5δ = , which was previously considered a medium effect (see paragraph 

4.5).  In the case where there is a small degree of variation, as in pattern 1, we 

have ,01δ =  for 8k = .  This implies that the extreme means differ by one SD.  

The proportion variation which can be attributed to population membership is 

now 6%.  Cohen uses the example of mean IQ’s of 7 groups, each consisting of 

a different profession, which have 12σ =  and are equally distributed on the 

interval 98-107.  In this example a  value of 0,25f =  is obtained. 

   

3.   Large effect   (((( ))))20,4 0,14f η=   ;  ==== : For 2k = , and pattern 3, this agrees 

with 0,8δ = , which was previously considered a large effect.  For pattern 1 this 

means that, if 8k = , the two extreme means differ by 1,6 SD’s from one another.  

The proportion variance 2η  is now 14%.  In the example involving the 7 groups of 

professions and their mean IQ’s described above, the IQ’s must vary between 98 

and 112 in order to produce a value of 0,4δ = . 

 

 

 

6.2    Indices for omnibus effects for dependent measurements 

 

Consider Example B from Chapter 3 where the three dependent measurements 

of the before, after and follow-up tests are recorded for each person within the 

control and experimental groups. If we are interested in treating the three tests as 

dependent groups when we compare them to one another, then an ANOVA with 

repeated measurements over the test opportunities should be conducted.  For 

the independent groups in the previous paragraph we only had two sources of 



16 
 

variation: between groups and within groups.  With dependent measurements 

within groups, the within group variation can be further sub-divided into a 

between person variation (or more generally, a “subject” variation) and a person 

within groups variation, i.e. the person ×  group interaction, which is now 

considered to be the error variation. 

 

Let 2
pσ  be the variance of the person (or subject) effect and 2

eσ  be the new error 

variance, the original error variance becomes 

                      2 2 2
p eσ σ σ= +                                                                              (6.23) 

and the total variance in (6.4) can now be expressed as: 

                      2 2 2 2
t µ p eσ σ σ σ= + +                                                                       (6.24) 

Similarly, the sum of squares, as discussed in paragraph 6.1.1, can now be 

defined as 

                      F P eSS SS SS= +                                                                     (6.25) 

where    PSS :     between person (subjects) sum of squares 

           eSS :      person within groups (error) sum of squares, 

 so that: 

            tot G P eSS SS SS SS= + +                                                                    (6.26) 

 

As in paragraph 5.2.2 the partial 2η  can also be obtained (like the partial 2R ) 

where one can remove the influence of variables which are not of primary 

interest.  When we used independent measurements 2
µσ  could be divided by the 

variance 2
tσ , as was shown in (6.4).  Now, however, we divide by 2 2

µ eσ σ+  

instead of 2
tσ  as in (6.16) because 2

pσ  has nothing to do with the error variation. 

Therefore 

                   
2

2
2 2
µ

µ e

σ
partial  η

σ σ
=

+
    ,                                                             (6.27) 
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which, for dependent measurements, controls for the person effect which we are 

not interested in at present.  The partial 2η  can thus be used as an omnibus 

effect size index in this case and it can be estimated by (Kline 2004a: Table 6.8) 

substituting the estimators of 2
µσ  and 2

eσ  into (6.27): 

                 2

1
1

G e

G e

meanSS meanSS
ˆpartial  η

kn
meanSS meanSS

k

−=
 + − − 

,                               (6.28) 

where ( )1G GmeanSS SS / k= −  and ( )( )1 1e emeanSS SS / n k .= − −   Note that n 

now denotes the number of persons (subjects) and is no longer the total number 

of measurements as in independent measurement studies. 

 

Example 6.5: 

Consider Example A of Chapter 3.  Here we find that there are 3 dependent 

measurements per person, meaning that there are 3k =  dependent groups. 

From Table A.2 it follows that 25n =  (only the experimental group) 

516,19 2GmeanSS /=  and ( )1183,15/ 2 24emeanSS= × . 

The estimation of partial 2η̂ : 

                     2 258,10 - 24,65 233,45
= 0,202

258,10 + 36,5×24,65 1157,78
ˆpartial  η = = . 

This means that the proportion of the total variance, controlling for the person 

effect, which can be attributed to the tests is 0,202. This indicates a large effect.      

                                                                                                                          □ 

 

According to Kline(2004a: 191) there are, at present, no known computer 

packages which are capable of producing confidence intervals for the omnibus 

effect size indices partial 2
Gη  for dependent groups.  Therefore we will not provide 

a CI in this case. 
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6.2.1 Intra-class correlation coefficient: 

We assume, for the effect size index partial 2η  and its estimator, that the group 

effect is a fixed effect and is controlled for the person effect.  By fixed effect we 

mean that the treatments or tests used are chosen to be a fixed set of 

treatments, e.g., the before, after and follow-up tests Example A, Chapter 3.  On 

the other hand, if the group effect is random, and the person effect is important, 

then  

                    
2

2
2 2

p

p e

σ
ˆpartial  η

σ σ
=

+
   ,                                                           (6.29) 

is an index which controls for the groups effect.  This index is called the intra-

class correlation coefficient Iρ  (Bartko,1966) and is estimated by (Kline, 2004a: 

Table 6.8): 

               
( )

1

1 1
p e p

I
p e p

MS MS F
ρ̂

MS k MS F k

− −
= =

− − − +
                                             (6.30)  

where pMS mean= GSS , 

         eMS mean= eSS ,  

from the one-way ANOVA model with person as the group factor and the 

variance ratio is p p eF MS / MS= .  An application of this is if there are k  test 

items measured on each of the n persons and the items are considered to be a 

random sample from a population of test items which all measure the same 

property of a person (like, for example, a section in an interest test where 15 

items in the test all measure the same interest).  This index represents the 

proportion of the total variance which is ascribed to the variance between the 

persons, but it is also the joint correlation between any two items.  This 

correlation is also known as the reliability of any of the k  items (see, for 

example, Bartko 1966; Shrout & Fleiss, 1979). 
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Bartko (1966) shows that Iρ  should not only be considered as a proportion 

variation (as in equation (6.30)) but is, in actuality, a correlation.  This follows 

because 

                            ( )2
p i jσ Cov x ,x=    and 

                     ( ) ( )2 2
p e i jσ σ Var x Var x+ = =   ,  so that 

               
( )

( ) ( )
( )i j

I i j

i j

Cov x ,x
ρ Cor x ,x

Var x Var x
= =    ,    

where ix  and jx  are the thi  and thj  measurements on the persons.  Therefore, 

Iρ  can also be estimated by the mean inter-item correlation.  If Iρ  is considered 

to be an effect size index, we can use the same guideline values which were 

used for the Pearson product moment correlation coefficient ρ  or its sample 

analogue r . 

 

Thus take       0,1Iρ =    :   small effect 

                       0,3Iρ =    :   medium effect 

                       0,5Iρ =    :   large effect. 

 

Clark & Watson (1995) recommend that the mean inter-item correlation should lie 

between 0,15 and 0,5, but they also accept that it will also depend on the 

underlying construct which must be measured by the items.  This interval roughly 

agrees with the interval 0,1 - 0,5 of guideline values which were recommended.  

Clark & Watson show that it is evidently important to investigate the values of the 

individual inter-item correlations.  These values should also lie within the interval 

0,15 - 0,5 and should also be reasonable homogenous:  in their, rather 

eloquent, wording:  “the inter-correlation matrix should appear as a calm but 

insistent sea or small but highly similar correlations”.  This condition ensures that 
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Iρ̂  provides an estimator for any inter-item correlation, which should all be equal 

to one another. 

 

 

6.2.2 Cronbach alpha coefficient 

 

While Iρ  is the reliability of a single item, it is occasionally also important to 

determine the reliability of the mean or sum of k  items.  If one assumes that the 

items have equal reliability Iρ  and the items all have the same variance, then 

reliability of the mean over k  measurements can be obtained from Iρ  by 

applying the Spearman-Brown-formula (see Steyn, 2004:  10): 

                                         ( )
( )1 1

k I
xx

I

kρ
ρ

k ρ
=

− +
    ,                                          (6.31) 

and it is estimated by the Cronbach α - coefficient  

                              
( )

1

1

1-
1

k

i
i=

k

i
i=

Var x
k

α
k

Var x

 
 
 =
 −  
  
   

∑

∑
    ,                                          (6.32) 

or by 

                             ( )
( )1 1

k I
xx

I

ˆkρ
ρ̂

ˆk ρ
=

− +
 .                                                        (6.33) 

Note that while ( )k
xxρ̂  is based on the results of an ANOVA or the inter-item 

correlations, only the item variances and the variance of the sum of the items are 

used in the calculation of α . 
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From (6.31), guideline values for ( )k
xxρ  (and also ( )k

xxρ̂ , α ) can be determined if we 

accept those proposed for Iρ .  The Cronbach alpha is a function of the number 

of items, k , and Table 6.1 can be used as a guideline to gauge the size of the 

indices.  From Table 6.1 it follows that if, for example, Iρ̂  is as small as 0,1 then 

the value of α  is 0,69 when 20k = , but it is 0,18 if 2k = .  With large values of 

Iρ̂ , then α  is large even when there are very few items. 

 

Table 6.2:  Cronbach-alpha values 

                                                             Number of items 

                  Intra-class- 

Effect             correlation        2             3            4            5            10           20          50 

Small                    0.1           0.18        0.25       0.31        0.36      0.53        0.69       0.85 

                            0.2           0.33        0.43       0.50        0.56      0.71        0.83       0.93 

Medium                0.3           0.46        0.56       0.63        0.68      0.81        0.90       0.96 

                            0.4           0.57        0.67       0.73        0.77      0.87        0.93       0.97 

Large                   0.5           0.67        0.75       0.80        0.83      0.91        0.95       0.98 

 

 

Example 6.6: 

Consider Example G discussed in Chapter 3.  The items in this example can be 

considered to be a random effect, this means that the estimation of the partial 2
pη  

is given by the intra-class correlation coefficient: 

                                     
6,830 -1,404

= 0,279.
6,830 + 9×1,404Iρ̂ =  

This provides an estimation of the joint correlation between any two items, and 

the value is interpreted as a medium effect.  Note that the mean of all the inter-
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item correlations in Table G.2 (the 1r =  is included on the diagonal) is 0,286, 

which does not differ greatly from Iρ̂ . 

The reliability of the mean (or sum) of the 10 items is estimated by: 

                              ( ) 10×0,279
= 0,795

9×0,279 +1
k

xxρ̂ ,=  

while the Cronbach-α  value obtained from Table G.3 is: 

                        
10 19,47

1- = 0,794
9 68,30

α
 =  
 

, 

which are, for practical purposes, the same values. From Table 6.2 for k = 10, it 

would appear that this is a medium effect.                                                                                              

Despite the fact that the mean inter-item correlation obtained for Table G.2 is 

0,2863, the inter-correlations are actually quite different.  In particular, items 5 

and 6 which produce small and even negative correlations.  This is an indication 

that these items do not belong to the underlying construct which we would like 

these items to be measuring and should rather be removed.  Without items 5 and 

6 the mean inter-item correlation is now 0,429 and = 0,855α .  Therefore, the 

reliability of one item and that of the remaining 8 items both tend toward large 

effects.        

                                                                                                            □ 

6.2.3 Confidence intervals for  Iρ  and ( )k
xxρ  

 

Under the assumption of normality of the items, it follows that p p FF MS / MS=  

has an F -distribution with ( )1n k −  and 1n−  degrees of freedom.  

Consequently, the ( )1-α 100%  CI for the variance ratio 2 2
p eσ / σ ‘s boundaries 

(see Shrout & Fleiss, 1979) is: 
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                     ( )( )2 1; 1L p α / nF F / F n k-= −  

and 

                    ( )( )2 1 ; 1U p α / n-F F F n k-= ⋅ , 

so that the approximate CI for Iρ is: 

              ( ) 11

1 1+
UL

I ,L I ,U
L U

FF
ρ ; ρ ;

F k F k

 −−=  + − − 
 .                                             (6.34) 

By applying the Spearman-Brown formula, the approximate ( )1 α− 100%  CI for 

( )k
xxρ  is: 

                      
( ) ( )1 1 1 1

I ,L I ,U

I ,L I ,U

kρ kρ
;

k ρ k ρ

 
  − + − + 

                                              (6.35) 

 

Example 6.7: 

Consider Example 6.6 where items 5 and 6 have been removed, so that 8k = , 

and, from Table G.4 it follows that 7,494 1,092, p EMS MS= =  so that 

7,494/1,092 = 6,863pF = .  For a 95%  CI :  ( )0,025 700;99 1,372F =  and 

( )0,025 99;700 1,326F = , so that 6,863/1,326 5,176=LF =  and 

6,863×1,372 = 9,416.UF =  

                  ( ) ( )5,176 -1 9,416 -1
0,343;0,513

5,176 + 8 -1 9,416 + 8 -1
I ,L I ,Uρ ; ρ ;

 = = 
 

 

For ( )8
xxρ  the CI is: 

                            ( )8×0,343 8× 0,513
0,807;0,894

7×0,343 +1 7× 0,513 +1
;

  = 
 

. 
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The value Iρ  can thus be as small as 0,34, which is a medium effect, but it can 

also be as large as 0,51, which is a large effect.  The reliability of the mean of the 

8 items can be considered to be medium to large according to the guidelines in 

Table 6.1. 

 

 
 
6.2.4 Limits of agreement and reliability coefficients (Yi  et.al, 2008) 

 

Suppose that k different measurement instruments, that are supposed to 

measure the same trait, are applied to the elements of a random sample of n 

individuals or objects. The following question can now be posed: To what degree 

do the different measurement instruments agree with one another? 

The following model describes the measurements ijY  obtained: 

                                                                            ij i ijY a eµ= + + ,                   (6.36) 

where ijY   denotes the measurement of the j-th measurement instrument on the i-

th object,   µ   denotes the corresponding mean measurement, and ia   is a 

random effect that varies for each object with a variance of 2
Bσ    (called the 

between object variation).  The error term ije   has a variance of 2
wσ   , and it is 

called the within object variation.  The means of both ia  and ije   are assumed to 

be 0. 

 

• Two measurement instruments (k = 2):  

 

Let the difference between two measurements on object i be given by: 

                                                        1 2 1 2,i i i i iD Y Y e e= − = −   such that  

                                                       ( ) 0iE D =  and  ( ) 22 .i wVar D σ=  
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Let  
1

1 n

i
i

D D
n =

= ∑  and ( )2

1

1

1

n

D i
i

S D D
n =

= −
− ∑  denote the sample mean difference 

and its standard deviation (SD) respectively.  The interval 1,96 DD S±    represents 

the estimated interval where 95% of the differences in the population from which 

the sample of objects originated, should fall. This interval is known as the limits of 

agreement. If the scientifically acceptable difference lies outside of these limits 

then it indicates agreement between the two measurement instruments for the 

given data set. 

If wσ   is estimated from the data as ˆwσ , then the repeatability coefficient is 

defined as: 

                                                         ˆ1,96 2 1,96 ,w Dh Sσ= =                     (6.37) 

which is the upper limit of agreement if 0.D =  

 

• More than two measurement instruments (k > 2): 

Here we find that the limits of agreement can no longer be used. However, we 

can still make use of the repeatability coefficient: 

                                                               ˆ1,96 2 wh σ= , 

with 2ˆwσ   the error mean squares from an repeated measures analysis of variance 

(ANOVA): 

                                        ( ) ( ) ( )22

1 1

ˆ / 1 / 1
n k

w ij i
i j

SSW n k Y Y n kσ
= =

= − = − −      ∑∑ ,  (6.38) 

where   
1

1 k

i ij
j

Y Y
k =

= ∑  . 

Motivation:  SSW can also be written as: 

                                         ( )
'

2

'
1 1 ' 1

/ ,
n k k

ij ij
i j jj j

SSW Y Y k
 = − =≠

= −∑ ∑ ∑   

where 'ij ijY Y−  are the ( )1 / 2k k −  paired differences for object i .  Let 2
iD  denote 

the mean of the squared differences of the i -th object, then  
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( ) 2

1

1
/

2

n

i
i

k k
SSW D k

=

− 
=  

 
∑  

                                                   ( ) 2

1

1 / 2
n

i
i

k D
=

= −∑  , 

thus 2 2

1

ˆ / 2
n

w i
i

D nσ
=

=∑ , which denotes the mean of the squared differences between 

paired measurements. 

If one assumes that ( )' 0− =ij ijE Y Y  and that the differences are normally 

distributed with variance 22 ,wσ  then for the difference D : 

                                           ( )ˆ0 1,96 2 wP D σ< <  

                                       ( )ˆ ˆ1,96 2 1,96 2w wP Dσ σ= − < <  

                                       0,95.�                                                                  (6.39) 

 

This means that the absolute pairwise differences between the measurement 

instruments lie between 0 and ˆ1,96 2 wσ  with probability 0,95.  If the repeatability 

coefficient is smaller than the scientifically acceptable absolute difference then it 

indicates a strong agreement. 

Under the assumption of normality of the error terms ije , one finds that 2ˆwσ  

follows a Chi-squared distribution with ( )1n k−  degrees of freedom. This means 

that the upper bound of the 95% confidence interval for the population 

repeatability coefficient is: 
( ) ( )

( )

2 2

2
, 1

ˆ1,96 2 1
 

−

−
= w

h

n k

n k
B

α

σ
χ

,                             (6.40) 

                and with k = 2:  
2

,

1,96
 ,= D

h

n

nS
B

αχ
                                                    (6.41) 

where 2
,α νχ  is the 100α -th percentile of a  Chi-squared distribution with ν  

degrees of free