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Preface 

In my work as statistical consultant, I began to realise that there also exists a need for the 

following up of non-parametric statistical tests with effect sizes. In my Manual for the 

determination of effect size indices and practical significance (Steyn, 2012), I tried to provide 

each statistical test with at least one effect-size index, but the focus was mainly on 

parametric statistical methods. To apply one of these effect sizes (meant to supplement 

parametric statistics) in non-parametric statistics, would not make sense and be incorrect. 

When contributing in writing an article in the field of physiotherapy (Pautz et. al., 2018), I 

became more aware of researchers’ need to be guided in using correct effect sizes after 

applying non-parametric methods in statistical analyses. 

I thus decided to write this manual for the clients of the Statistical Consultation Services. To 

use the manual without referring back to my previous one, I have included some topics that 

had already been discussed in the latter in order to make this one more comprehensive. 

These topics are dealt with in subsections 2.1 and 2.2; they appear in Chapter 5 

(subsections 5.4 and 5.5) of my previous manual, but have been shortened and slightly 

altered. 

The calculations of non-parametric tests’ statistics can all be done by using the statistical 

packages SAS (SAS Institute Inc. 2020), SPSS (IBM SPSS Statistics, 2020) and 

STATISTICA (TIBCO STATISTICA, 2020). As the calculations can also be done manually 

and certain principles can thus be illustrated, I always provide the methods of those 

calculations before giving attention to the calculation of accompanying effect sizes. 

In the determination of confidence intervals, calculations are not always possible without the 

use of the SAS program CI_w (see Steyn, 2012) and the Excel Nonparametric Effect Size 

and CI Calculator spreadsheet. This Excel spreadsheet is an adapted and extended version 

of Pautz et.al.’s (2018) Supplementary Calculator. Both the program and spreadsheet are 

enclosed in this manual. 
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1. Introduction 

When working with measurements on the nominal scale (i.e., categorical measurements), 

non-parametric statistics is directly applicable. These tests and methods are dealt with in 

Section 2, together with the relevant effect-size indices. 

For ordinal measurements (e.g., on a five-point Likert scale), discrete measurements (e.g., 

the number of people living in a house), interval scale measurements (e.g., weights and 

heights of people) as well as when groups are small (e.g., smaller than 30), many 

parametric methods cannot be used anymore, as the assumption of normality is necessary. 

An example is when 12 persons are randomly drawn from each of the populations of 

healthy and ill persons, but the measurements from the populations are not necessarily 

normally distributed. Suppose the blood pressure of persons is measured and they are 

asked to declare on a seven-point scale how regularly they come down with a cold. In this 

case, it is appropriate to use non-parametric methods by employing ranks based on such 

measurements. These cases with effect-size indices receive attention in Sections 4 and 5. 

Relationships between two or more variables measured on ordinal, discrete and interval 

scales are not necessarily linear or the underlying joint distribution is not always 

multivariate normal. Therefore, it is not possible to test statistically for significant 

correlations. Once again, non-parametric measures of relationships (based on the ranks of 

these measurements) can then be used as effect-size indices. This receives attention in 

Section 3. 

 

2. Categorical relationships 

With nominal or categorical measurements, relationships between two such variables can be 

determined by using two-way frequency tables. If the variables are dichotomous (i.e., 

comprising only two categories, e.g., pass/fail or positive/negative), a two-by-two (2 x 2)  

frequency table (also called a four-fold table) is formed. If the two dichotomous variables are 

independent (e.g., gender and pass/fail), a considerable number of measures or effect 

sizes can be calculated from the table and this is the topic of subsection 2.1. In subsection 

2.2, the relationships between two independent categorical variables are viewed where at 

least one of them has more than two categories (e.g., four language categories vs. nine 

provinces). 
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The case of two dichotomous dependent variables (e.g., pass/fail of first test vs. pass/fail of 

second test of the same subject) is subsequently dealt with in subsection 2.3. Lastly, the 

case of more than two dependent dichotomous variables (e.g., when four examiners 

assess the same students in an oral examination to judge whether they pass or fail) is the 

topic of subsection 2.4. 

 

2.1   Effect sizes in two-by-two (2 x 2) frequency tables 

When population or sample elements can be classified simultaneously according to two 

dichotomous categories, these data can be represented in a 2 x 2 frequency or contingency 

table (also called a four-fold table), as in Table 1 (see Steyn, 2002 and Kline, 2004a: 146): 

Table 1 

The 2 x 2 frequency table of x and y 

 y: Category 1 y: Category 2 Total 
x: Category 1 a b a + b 
x: Category 2 c d c + d 
Total a + c b + d n 

 

 

 

Here, a, b, c and d are the frequencies in the four combinations of the categories of x and y 

and n = a + b + c + d is the population or sample size. 

 

2.1.1 Relationship between x and y 

The Pearson correlation coefficient between  x and  y (where each one takes on two values, 

e.g., 1 and 2) is in terms of the frequencies in Table 1: 

                              𝜑𝜑 = 𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏
�(𝑎𝑎+𝑏𝑏)(𝑏𝑏+𝑎𝑎)(𝑎𝑎+𝑏𝑏)(𝑏𝑏+𝑎𝑎)

 ,                                   (1) 

the phi coefficient. Therefore, this coefficient has the same characteristics as 𝜌𝜌𝑥𝑥𝑥𝑥  and 𝑟𝑟𝑥𝑥𝑥𝑥 in 

Chapter 5, subsection 5.1 (see Steyn, 2012) and can as such be used as an effect-size 

index. As in the case of 𝜌𝜌𝑥𝑥𝑥𝑥 and 𝑟𝑟𝑥𝑥𝑥𝑥,  𝜑𝜑 can also be negative, which is the case when          

bc > ad. Because categories 1 and 2 are usually in an arbitrary sequence (e.g., the first 

category of x is men and the second is women), the frequency table could usually be 
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constructed in such a way that the greater frequencies appear in category 1 of both x and y 

and category 2 of both x and y. As a result, such a construction has a positive 𝜑𝜑. 

Remark: The chi-square statistic for a two-by-two frequency table is: 

𝑋𝑋2 = 𝑛𝑛(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)2

(𝑎𝑎+𝑏𝑏)(𝑏𝑏+𝑎𝑎)(𝑎𝑎+𝑏𝑏)(𝑏𝑏+𝑎𝑎)
= 𝑛𝑛𝜑𝜑2.  

It thus holds true that 𝜑𝜑 = �𝑋𝑋2

𝑛𝑛
. 

With reference to the guideline values for 𝜌𝜌𝑥𝑥𝑥𝑥, Cohen (1969, 1977, 1988) proposes the same 

values for 𝜑𝜑, namely: 

• small effect:             𝜑𝜑 = 0,1; 

• medium effect:         𝜑𝜑 = 0,3; 

• large effect:              𝜑𝜑 = 0,5. 

 

2.1.2 Binomial effect-size display (Rosenthal et.al., 2000: 17) 

To interpret the 𝜑𝜑-coefficient in terms of a 2 x 2 frequency table, the so-called BESD 

(binomial effect-size display) is used. As an example, consider an experimental and a control 

group, each consisting of size 100. Suppose that of the 200 persons, 100 improved after a 

certain treatment and 100 did not improve; the 2 x 2 table then represents the following: 

 Improved Not improved Total 
Experiment 66 34 100 
Control 34 66 100 
Total 100 100 200 
 

Thus, 𝜑𝜑 = 66×66−34×34
√100×100×100×100

= 0,32.  

In general, the content of the 2 x 2 table is: 

                                      100(0,5 + r/2)   100(0,5 - r/2)    

                                                100(0,5 - r/2)   100(0,5 + r/2), 

with r = 𝜑𝜑. In the example, r = 0,32 and thus 66% - 34% = 32%. The value of r therefore gives 

the difference in improvement rates (66% vs 34%) when one half of the population 

(belonging to the experimental group) receives treatment and the other half (belonging to the 

control group) receives no treatment. The following table represents the improvement rates 

for values of r = 𝜑𝜑: 
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r = 𝝋𝝋 Improvement: 
from 

 
to 

Effect 
(Cohen,1988) 

0,0 0,50 0,50  
0,1 0,45 0,55 small 
0,2 0,40 0,60  
0,3 0,35 0,65 medium 
0,4 0,30 0,70  
0,5 0,25 0,75 large 
0,6 0,20 0,80  
0,7 0,15 0,85  
0,8 0,10 0,90  
0,9 0.05 0,95  
1,0 0.00 1,00  
 

2.1.3 Interpretation of 𝜑𝜑: 

To get a feel for 𝜑𝜑-values in terms of four-fold tables, Steyn (2002) provides the following 

examples in Table 2: 

Table 2 

Examples of 2 x 2 tables 

 

(a)    𝜑𝜑 = 0: if frequencies in two rows (or columns) are equal, e.g., 

 

 y = 1 y = 2 Total 
x = 1 50 50 100 
x = 2 25 25   50 
Total 75 75 150 
 

 

 

(b)    𝜑𝜑 = 0,1 (small effect): 

                            

 y = 1 y = 2 Total 
x = 1 45 55 100 
x = 2 55 45 100 
Total 100 100 200 
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(c)    𝜑𝜑 = 0,3 (medium effect): 

 

 y = 1 y = 2 Total 
x = 1 65 35 100 
x = 2 35 65 100 
Total 100 100 200 
 

 

(d)    𝜑𝜑 = 0,5 (large effect): 

 

 y = 1 y = 2 Total 
x = 1 75 25 100 
x = 2 25 75 100 
Total 100 100 200 
 

(e)    𝜑𝜑 = 1: if frequencies are 0 in any diagonal of the table, e.g., 

 

 y = 1 y = 2 Total 
x = 1 100 0 100 
x = 2 0 100 100 
Total 100 100 200 
 

Table 2(e) is an example of a strictly perfect relationship between x and y (Smithson, 2000: 

324). This means that x determines y completely as well as the other way round. If a person 

has a 1 for x, it will be a 1 for y too, whereas all persons with a 2 for x will also receive a 2 for 

y. 

Consider the following table, though: 

 y = 1 y = 2 Total 
x = 1 100 0 100 
x = 2 75 25 100 
Total 175 25 200 
 

Here, we find a weak perfect relationship (Smithson, 2000: 324) in the sense that y can only 

be fully determined for category 1 of x, but not for category 2; x is also fully determined when 

y = 2. Here, 𝜑𝜑 = 0,38, which is a significant decrease from 𝜑𝜑 = 1. It indicates that 𝜑𝜑 is not a 

suitable measure in the measurement of weak perfect relationships. Later on, we will show 

that the relative odds ratio (OR) is more suitable for this purpose. 
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Example 1: 

In Example C, Chapter 3 of Steyn (2012), the last three categories of smoking are combined 

so that it becomes a two-by-two table: 

 Coronary 
heart 
disease: 
Yes 

Coronary 
heart 
disease: 
No 

Total 

Smoke: Yes 78 59 137 
Smoke: No 42 61 103 
Total 120 120 240 
 

In order to determine the relationship between coronary heart disease and smoking, 𝜑𝜑 is 

calculated as 

                   𝜑𝜑 = 78×61−59×42
√137×103×120×120

= 0,16, 

which indicates a small effect.                                                                                          

 

Suppose the 240 employees have been selected randomly from all workers at the company. 

Then, 𝜑𝜑 could be estimated with the value of 0,16. 

                                                                                                                             

In general, the sample value of 𝜑𝜑, 𝜑𝜑� can be used as an estimator of the population value of 

𝜑𝜑. This estimator is asymptotically unbiased, but overestimate 𝜑𝜑 for small samples with 

approximately 1/√𝑛𝑛 (Johnson et.al., 1995: 447). 

 

Remark: 

On the basis of an example, Fleiss (1994) points out the following problem with 𝜑𝜑 as effect-

size index. Consider two studies whose relative frequencies of y for given x are the same, 

but whose relative fequencies of x differ: 

Study  y = 1 y = 0 Total 
    1 x = 1 45 5 50 
 x = 0 120 30 150 
 Total 165 35 200 
    2 x = 1 90 10 100 
 x = 0 80 20 100 
 Total 170 30 200 
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In both studies, the relative frequencies for x = 1, as well as for x = 0, are 45 / 50 = 90 / 100 

and 5 / 50 = 10 / 100. However, the totals of the relative frequencies at x = 1, as well as at x 

= 0, are 50 / 200 and 100 / 200, which are thus different. 

The 𝜑𝜑-coefficients, though, are 0,11 and 0,14 for the two studies. 

This means that the 𝜑𝜑-coefficient is influenced by the degree to which the categories of x are 

represented in the data. The same holds true for the y-categories. 

For this reason, 𝜑𝜑� is not a valid estimator if it is based on something else than a random 

sample. With randomness, the marginal totals of the 2 x 2 frequency table should be in the 

same relationships as those of the population. Consider the following fictitious frequency 

table obtained from Example 1, but where a random sample was drawn from the company 

instead of a stratified sample with equal numbers of employees with or without heart 

diseases: 

 Coronary 
heart 
disease: 
Yes 

Coronary 
heart 
disease: 
No 

Total 

Smoke: Yes 26 98 124 
Smoke: No 14 102 116 
Total 40 200 240 
 

The table was obtained by distributing the 240 employees who have heart diseases into 40 

instead of 120 and taking the number of smokers from them as one third of the original 

number of 78. In the same way, the number 98 was approximated to the nearest integer, 

(59/120) × 200. This table should be a realisation of a random sample if one-sixth (i.e., 40 / 

240) of the employees have heart diseases. The value 𝜑𝜑� = 0,119 will give a valid estimate of 

the population 𝜑𝜑-coefficient, whereas on the basis of a stratified sample, Example 1’s value 

of 𝜑𝜑� = 0,16 does not serve as a valid estimator. 

 

2.1.4  Confidence interval (CI) for 𝜑𝜑 

For large samples, Fleiss (1994) gives the variance of φ̂  approximated as: 

                  𝑉𝑉𝑉𝑉𝑟𝑟(𝜑𝜑�) = 1
𝑛𝑛
�1− 𝜑𝜑�2 + 𝜑𝜑� �1 + 𝜑𝜑�2

2
� 𝐶𝐶1 −

3
4
𝜑𝜑�2𝐶𝐶2�,                               (2) 

where 

                  𝐶𝐶1 = (𝑎𝑎+𝑏𝑏−𝑏𝑏−𝑎𝑎)(𝑎𝑎+𝑏𝑏−𝑏𝑏−𝑎𝑎)
�(𝑎𝑎+𝑏𝑏)(𝑏𝑏+𝑎𝑎)(𝑎𝑎+𝑏𝑏)(𝑏𝑏+𝑎𝑎)
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and 

               𝐶𝐶2 = (𝑎𝑎+𝑏𝑏−𝑏𝑏−𝑎𝑎)2

(𝑎𝑎+𝑏𝑏)(𝑏𝑏+𝑎𝑎)
+ (𝑎𝑎+𝑏𝑏−𝑏𝑏−𝑎𝑎)2

(𝑎𝑎+𝑏𝑏)(𝑏𝑏+𝑎𝑎)
.  

The approximated 100(1 − α)%  confidence interval (CI) for  𝜑𝜑 has boundaries:  

         

          𝜑𝜑𝑂𝑂 = 𝜑𝜑� − 𝑧𝑧𝛼𝛼/2�𝑉𝑉𝑉𝑉𝑟𝑟(𝜑𝜑�)                                                              

and                                                                                                                (3) 

          𝜑𝜑𝐵𝐵 = 𝜑𝜑� + 𝑧𝑧𝛼𝛼/2�𝑉𝑉𝑉𝑉𝑟𝑟(𝜑𝜑�). 

As alternative, the approximated CI can be determined by using the SAS program CI_w (see 

Steyn, 2012) for 𝜑𝜑 as a special case of w in subsection 2.2. Use 𝑋𝑋2 = 𝑛𝑛𝜑𝜑�2, n and df = 1 as 

inputs. Excel’s Nonparametric Effect Size and CI Calculator can also be used as an 

alternative for SAS. 

 

Example 1 (continued): 

For Example 1, 𝐶𝐶1 = (78+59−42−61)(78+42−59−61)
√137×103×120×120

= 0, 𝐶𝐶2 = (137−103)2

137×103
+ 0 = 1156

14111
= 0,082 

                                 𝑉𝑉𝑉𝑉𝑟𝑟(𝜑𝜑�) = 1
240

�1 − 0,162 + 0,16 �1 + 0,162

2
�× 0 − 3

4
0,162 × 0,082� 

= 0,9728
2

= 0,00405.  

                      

Then, a 95% CI’s boundaries are: 

                     𝜑𝜑𝑂𝑂 = 0,16 − 1,96�0,00405 = 0,16 − 0,125 = 0,035, 

                     𝜑𝜑𝐵𝐵 = 0,16 + 0,125 = 0,285. 

For the approximate CI (by means of SAS or Excel), the inputs are: 

X2 = 240(0,16)2 = 6,144, n = 240 and vg = 1. 

This produces the 95% CI of 0,032 and 0,287, which is very close to the approximate CI. 

Thus, even with a large sample such as 240, the 95% CI is  moderately wide and the value 

of 𝜑𝜑 varies in such a way that it is a small to medium effect.              
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2.1.5 Probability measures from 2 x 2 frequency tables 

Suppose the proportions of population elements of populations 1 and 2 are p and q, 

respectively. Suppose the response on y can be positive or negative (e.g., ‘agree’ versus 

‘differ’; in case-control studies in epidemiology, ‘exposed’ versus ‘not exposed’; in 

intervention studies, ‘improve’ versus ‘not improve’). Take the probabilities (proportions) for 

positive 𝜋𝜋1 and 𝜋𝜋1 in the two populations. The 2 x 2 frequency table thus represents the 

following: 

Table 3 

General 2 x 2 table 

 y: positive y: negative Total 
x: population 1 pN𝜋𝜋1 pN(1 − 𝜋𝜋1) pN 
x: population 2 qN𝜋𝜋2 qN(1 − 𝜋𝜋2) qN 
Total N𝜋𝜋 N(1 − 𝜋𝜋) N 
                                       

Here, 𝜋𝜋 = 𝑝𝑝𝜋𝜋1 + 𝑞𝑞𝜋𝜋2 is the probability of a positive response by both populations, whereas N 

is the total number of elements in both populations. 

By using the table above, we now discuss the following three comparative risk or rate 

measures: 

• Difference in proportion of positive responses 𝜋𝜋1 − 𝜋𝜋2 

• Ratio of proportion of positive responses 𝜋𝜋1/𝜋𝜋2, the rate or risk ratio 

• Relative odds ratio  

                        𝜔𝜔 = 𝜋𝜋1/(1−𝜋𝜋1)
𝜋𝜋2/(1−𝜋𝜋2)

= 𝜋𝜋1(1−𝜋𝜋2)
𝜋𝜋2(1−𝜋𝜋1)

 . 

Rate measures is a more general term, because only when  ‘positive’ means something 

undesirable, for example ‘exposed’, ‘identified’, ‘ill’ or ‘dead’, we can use the term risk 

measures. 

2.1.6  Difference in proportions 

As in the case of averages, two kinds of effect-size indices are here under discussion: firstly, 

standardised differences in proportions and secondly, the relationship between the response 

y and the population distribution x. 

(a) Standardised differences in proportions: 

Take 𝑦𝑦𝑖𝑖 = 1 if population i is positive and 𝑦𝑦𝑖𝑖 = 0 if population i is negative. 
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Then, the population average of 𝑦𝑦𝑖𝑖   is  𝜇𝜇𝑖𝑖 = 𝜋𝜋𝑖𝑖 and its population variance is                       

  𝜎𝜎𝑖𝑖2 = 𝜋𝜋𝑖𝑖(1 − 𝜋𝜋𝑖𝑖), so that, from subsection 4.21 in Chapter 4 of the manual (Steyn, 2012), 

with weights W1 = p and W2 = q, it follows that: 

                   𝛿𝛿𝑔𝑔 = 𝜋𝜋1−𝜋𝜋2
�𝑝𝑝𝜋𝜋1(1−𝜋𝜋1)+𝑞𝑞𝜋𝜋2(1−𝜋𝜋2)

 .                                                                 (4) 

If equal population variances are accepted, each variance can be replaced by  𝜋𝜋(1 − 𝜋𝜋) 

(remember that 𝜋𝜋 = 𝑝𝑝𝜋𝜋1 + 𝑞𝑞𝜋𝜋2  and 𝑝𝑝 + 𝑞𝑞 = 1) and this produces the proportion analogue of 

𝛿𝛿: 

                  𝛿𝛿 = 𝜋𝜋1−𝜋𝜋2
�𝜋𝜋(1−𝜋𝜋)

 .                                                                                       (5) 

With population 1 as reference point (i.e., the control), the effect-size index becomes: 

                Δ1 =  𝜋𝜋1−𝜋𝜋2
�𝜋𝜋1(1−𝜋𝜋1)

 .                                                                                    (6) 

The estimators 𝛿𝛿𝑔𝑔, 𝛿𝛿 and Δ1 can be obtained by replacing the proportions 𝜋𝜋1 and 𝜋𝜋2 with 

𝑝𝑝1 and 𝑝𝑝2, which are the sample proportions for the two populations. 

However, the problem with all three indices mentioned above is that the standard deviation 

by which they are divided depends on 𝜋𝜋1 and 𝜋𝜋2. 

Cohen (1969, 1977, 1988) therefore proposes the following effect-size index: 

                            𝜓𝜓 = 2[𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛(√𝜋𝜋1) −  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛(√𝜋𝜋2)].                                           (7) 

Take note that 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛(𝑥𝑥) is the angle in radians  𝑉𝑉 of which 𝑏𝑏𝑏𝑏𝑛𝑛(𝑉𝑉) = 𝑥𝑥. 

Remarks: 

• On pocket calculators, the function 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛(𝑥𝑥) is also indicated by 𝑉𝑉𝑟𝑟𝑎𝑎𝑏𝑏𝑏𝑏𝑛𝑛(𝑥𝑥) or 

𝑏𝑏𝑏𝑏𝑛𝑛−1(𝑥𝑥).  

• Radians are obtained in degrees from an angle by 𝑉𝑉 = 𝜃𝜃
360

× 6,283, where 𝜃𝜃 is the 

angle in degrees. 

• If 𝜋𝜋1 or 𝜋𝜋2 = 0, use 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛��1/(4𝑛𝑛)� instead of 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛(0). 

• If 𝜋𝜋1 or 𝜋𝜋2 = 1, use 1,571 - 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛��1/(4𝑛𝑛)� instead of 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛(1). 

• The standard deviation of 𝜓𝜓 is independent of 𝜋𝜋1 and 𝜋𝜋2 so that, as in comparison of 

averages, the scale remains constant. For example, for 𝜋𝜋1 = 0,65 and 𝜋𝜋2 = 0,35, 

𝜓𝜓 = 0,61, whereas for 𝜋𝜋1 = 0,5 and 𝜋𝜋2 = 0,2, 𝜓𝜓 = 0,64. This means that a difference 

of 0,3 in proportions produces more or less a difference of 0,6 on the 𝜓𝜓-scale. With 

the index 𝛿𝛿𝑔𝑔, the concordant values would be 0,63 and 0,50 if p = q = 0,5 is 

assumed.  
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• Take note that in a BESD two-by-two table (see previous section), all the marginal 

totals are 100 and 𝜋𝜋1 − 𝜋𝜋2 is transformed to φ. Therefore, 𝑟𝑟 = 𝜋𝜋1 − 𝜋𝜋2 can be taken 

and the BESD determined from the difference in proportions. 

 

If random samples of sizes 𝑛𝑛1 and 𝑛𝑛2 from the populations produce 𝑝𝑝1 en 𝑝𝑝2 as proportions, 

the estimator 

                                 𝜓𝜓� = 2�𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛��𝑝𝑝1� −  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛��𝑝𝑝2��                               (8) 

can be used. For large samples, 𝜓𝜓� is normally distributed with average 𝜓𝜓 and 

variance   � 1
𝑛𝑛1

+ 1
𝑛𝑛2
� = 𝑛𝑛1+𝑛𝑛2

𝑛𝑛1𝑛𝑛2
, so that the 100(1-α)% CI is given by the boundaries:                                     

𝜓𝜓𝑂𝑂 = 𝜓𝜓� − 𝑧𝑧𝛼𝛼/2�
𝑛𝑛1+𝑛𝑛2
𝑛𝑛1𝑛𝑛2

     

and                                                                                                                (9) 

𝜓𝜓𝐵𝐵 = 𝜓𝜓� + 𝑧𝑧𝛼𝛼/2�
𝑛𝑛1+𝑛𝑛2
𝑛𝑛1𝑛𝑛2

 . 

Example 1 (continued): 

Consider Example 1 and take the coronary heart disease patients as population 1 and those 

without the disease as population 2. Now, 𝜋𝜋1 = 78
120

= 0,65 and 𝜋𝜋2 = 0,49, 𝑝𝑝 = 120
240

= 0,5. 

                         𝛿𝛿𝑔𝑔 = 0,65−0,49
√0.5×0,65×0,35+0,5×0,49×0,51

= 0,17
0,489

= 0,348. 

To determine 𝛿𝛿, we calculate 𝜋𝜋 = 137 / 249 = 0,57, so that 

𝛿𝛿 = 0,17 / �0,57 × 0,43 = 0,17 / 0,495 = 0,343, which is for all practical purposes the same 

as gδ . 𝜓𝜓 = 2 �𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛 ��0,65 � − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛(√0,49 � = 2(0,9377− 0,7754) = 0,325, which gives 

more or less the same effect size. 

If the assumption is made that there are two random samples drawn from populations 1 and 

2, the approximated 95% CI for 𝜓𝜓′s boundaries are: 

𝜓𝜓𝑂𝑂 =  0,325− 1,96�
120 + 120
120 × 120

= 0,325 − 1,96 × 0,129 = 0,072 

𝜓𝜓𝐵𝐵 =  0,325 + 1,96 × 0,129 = 0,578. 



13 
 

The value 𝜓𝜓 in the population can thus be as low as 0,072 , but also as high as 0,578  (with 

a probability of 95%).  

 

2.1.7 Guideline values for differences in proportions 

 

From Example 1 (continued), it seems as if all three the effect-size indices 𝛿𝛿𝑔𝑔, 𝛿𝛿 and 𝜓𝜓 

produce more or less the same values. In practice, this holds true for all the combinations of 

0,1 ≤ 𝜋𝜋1,𝜋𝜋2 ≤ 0,9 and 0,25 ≤ 𝑝𝑝 ≤ 0,5. With reference to the guideline values of 𝛿𝛿, based on 

averages, Cohen (1969, 1977, 1988) proposes the same guidelines: 

Small effect: 𝛿𝛿𝑔𝑔, 𝛿𝛿 and 𝜓𝜓 = 0,2: This value is obtained when (𝜋𝜋1,𝜋𝜋2) form, for example, the 

following pairs: (0,005; 0,1), (0,2; 0,29), (0,4; 0,5), (0,6; 0,7), (0,8; 0,87) and (0,9; 0,95). 

Medium effect: 𝛿𝛿𝑔𝑔, 𝛿𝛿 and 𝜓𝜓 = 0,5: Here, (𝜋𝜋1,𝜋𝜋2)-values are, for example, the pairs: (0,05; 

0,21), (0,2; 0,43), (0,4; 0,65), (0,6; 0,82), and (0,8; 0,96). 

Large effect: 𝛿𝛿𝑔𝑔, 𝛿𝛿 and 𝜓𝜓 = 0,8: Here, (𝜋𝜋1,𝜋𝜋2)-values are, for example, the pairs: 

(0,05; 0,34), (0,2; 0,58), (0,4; 0,78), (0,6; 0,92), and (0,8; 0,996). 

 

Burnand et. al. (1990) propose guidelines that were determined empirically from a survey of 

392 articles in the medical literature: 

• Significant: 𝛿𝛿 = 0,28 

• Substantially significant: 𝛿𝛿 = 0,35 

• Highly significant: 𝛿𝛿 = 0,65 

 

2.1.8 Rate or risk ratio 

 

The rate ratio is the ratio of the probabilities 𝜋𝜋1 and 𝜋𝜋2, as defined in subsection 2.1.5. If 

population 1 is the control population and population 2 the treatment population, 𝜋𝜋1/𝜋𝜋2 is the 

ratio of the proportion of positive responses of the control persons relative to the treated 

persons. If ‘positive’ means something such as illness or death, one refers to a risk ratio. If 

𝜋𝜋1/𝜋𝜋2 > 1, it means the risk is greater in the control than in the treatment group, which 

means that the treatment has been advantageous. The calculation of 𝜋𝜋1/𝜋𝜋2 in terms of the 

cell frequencies of a two-by-two frequency table (Table 3) is the following: 
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                      𝜋𝜋1
𝜋𝜋2

= 𝑎𝑎/(𝑎𝑎+𝑏𝑏)
  𝑏𝑏/(𝑏𝑏+𝑎𝑎)

 .                                                                      (10) 

If working with random samples of sizes n1 and n2 from the populations, the estimated rate 

ratio is 𝑝𝑝1/𝑝𝑝2, where 𝑝𝑝1 and 𝑝𝑝2 are the sample proportions of samples from the two 

populations. 

The disadvantage of the rate ratio is that it can become very large if 𝜋𝜋2 becomes very small 

relative to 𝜋𝜋1. It therefore does not serve as an effect-size index such as, for example, 𝜑𝜑 or 

𝜂𝜂2 that lies between 0 and 1; it should be evaluated by how far it lies from 1, as   𝜋𝜋1/𝜋𝜋2 = 1 

means there is no difference in rate or risk. The natural logarithm of 𝜋𝜋1/𝜋𝜋2, namely   

𝑙𝑙𝑛𝑛 �𝜋𝜋1
𝜋𝜋2
� = 𝑙𝑙𝑛𝑛𝜋𝜋1 − 𝑙𝑙𝑛𝑛𝜋𝜋2, also serves as an effect-size index. It can take on  any value, with the 

zero as no difference in rate. According to Fleiss (1994) and Kline (2004a), 𝑙𝑙𝑛𝑛 �𝑝𝑝1
𝑝𝑝2
� is 

approximately normally distributed if the samples are large. Further, 

  𝑉𝑉𝑉𝑉𝑟𝑟 �ln �𝑝𝑝1
𝑝𝑝2
�� = 1−𝑝𝑝1

𝑛𝑛1𝑝𝑝1
+ 1−𝑝𝑝2

𝑛𝑛2𝑝𝑝2
 ,                                                                    (11) 

so that the 100(1-𝛼𝛼)% CI for the boundaries (L; U) of 𝑙𝑙𝑛𝑛 (𝜋𝜋1
𝜋𝜋2

) is obtained from: 

    𝑙𝑙𝑛𝑛 (𝑝𝑝1
𝑝𝑝2

) ± 𝑧𝑧𝛼𝛼/2�
1−𝑝𝑝1
𝑛𝑛1𝑝𝑝1

+ 1−𝑝𝑝2
𝑛𝑛2𝑝𝑝2

 .                                                                   (12) 

Then, the CI for 𝜋𝜋1/𝜋𝜋2 has boundaries: 

           (𝜋𝜋1
𝜋𝜋2

)𝐿𝐿 = 𝑒𝑒𝐿𝐿 and (𝜋𝜋1
𝜋𝜋2

)𝑈𝑈 = 𝑒𝑒𝑈𝑈,                                                             (13)  

where (L, U) are the CI with boundaries in (12) and (13). 

 

Example 1 (continued): From Example 1, take population 1 as persons with coronary heart 

disease and population 2 as those without the disease; then, 𝜋𝜋1 = 78
120

= 0,65 and 𝜋𝜋2 = 59
120

=

0,49 are the proportions of probabilities that persons from these populations are smokers. 
𝜋𝜋1
𝜋𝜋2

= 0,65
0,49

= 1,327, which means that persons with coronary heart disease are 1,3 times more 

inclined to smoke than those without the disease. Smoking can therefore be a risk factor for 

this disease. If the 120 per group are viewed as two random samples, 𝑝𝑝1 = 0,65 and 𝑝𝑝1 =

0,49, so that 𝑝𝑝1
𝑝𝑝2

= 0,65
0,49

= 1,327 is the estimate of the rate ratio, whereas 

        ln �𝑝𝑝1
𝑝𝑝2
� = ln(1,327) = 0,283,                    
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𝑉𝑉𝑉𝑉𝑟𝑟 �ln (
𝑝𝑝1
𝑝𝑝2

)� =
1 − 0,65

120 × 0,65
+

1 − 0,49
 120 × 0,49

= 0,00449 + 0,00864 = 0,0131.                                           

100(1-𝛼𝛼)%CI for ln (𝜋𝜋1
𝜋𝜋2

): 0,283 ± 1,96√0,0131 = 0,283 ± 0,225 = (0,058; 0,508),                    

 so that (𝜋𝜋1
𝜋𝜋2

)𝑂𝑂 = 𝑒𝑒0,058 = 1,06,   (𝜋𝜋1
𝜋𝜋2

)𝐵𝐵 = 𝑒𝑒0,508 = 1,661. 

This means that with a 95% probability,  𝜋𝜋1
𝜋𝜋2

 can be as low as 1,06 but also as high as 1,661. 

There is thus an indication of a risk. 

 

2.1.9 Odds ratio  

 

First, it is necessary to define odds. In terms of Table 3, the odds for population 1 is 𝜋𝜋1/(1−

𝜋𝜋1) and for population 2, 𝜋𝜋2/(1− 𝜋𝜋2). It thus gives the ratio of the probability of y being 

positive with reference to the probability of y being negative. 

Example 1 (continued): In Example 1, the odds ratios for persons with coronary heart 

disease is 78
42

= 1,857, whereas it is 59
61

= 0,967 for persons without the disease. Thus, with 

heart disease patients, around 1,9 of them smoke for each one who does not smoke, 

whereas it is nearly 1 with persons who do not have heart disease. 

 

If the two populations’ odds are to be compared, it can be done by determining the ratio 

thereof. 

This ratio is called the odds ratio (OR): 

                       𝜔𝜔 = 𝜋𝜋1/(1−𝜋𝜋1)
𝜋𝜋2/(1−𝜋𝜋2)

= 𝜋𝜋1(1−𝜋𝜋2)
𝜋𝜋2(1−𝜋𝜋1)

= 𝑎𝑎𝑎𝑎
𝑏𝑏𝑏𝑏

 .                                         (14) 

To calculate, it is easiest to use 𝑎𝑎𝑎𝑎
𝑏𝑏𝑏𝑏

 from Table 1. The value of OR can vary between 0 and 

infinity, with the value of 1 when the two odds are the same. The values 0 and infinity are 

obtained if any of the frequencies in the 2 x 2 table has a value of 0. It is precisely the case 

in subsection 2.1.3 if a weak perfect relationship exists between x andy. 

 

Example 2 (Smithson, 2000: 324): 

While researching snake phobia, a clinical psychologist obtained the following frequency 

table: 
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 Snakes: 
persons 
who like 
them 

Snakes: 
persons who 
dislike them 

Total 

Snakes: 
persons who 
fear them  

49 (a) 5 (b) 54 

Snakes: 
persons who 
don’t fear them 

159 (c) 49 (d) 208 

Total 208 54 262 
 

The odds ratio for people who fear snakes = 49 / 5 = 9,8. 

The odds ratio for people who do not fear snakes = 159 / 49 = 3,24. 

The odds ratio is: 

                            OR = 9,8 / 3,24 = 3,02. 

Take note that OR could also be obtained from:  

    OR = (ad) / (cd) = (49 × 49) / (5 × 159) = 3,02. 

(Here, a is taken as the frequency of the ‘Yes/Yes’ category etc.) 

This means that the odds ratio for people who fear snakes is three times higher than for 

those who do not fear them. An OR of 1 / 3,02 = 0,331 would have the same meaning if the 

odds ratio of people who do not fear snakes would be compared to those who do fear 

snakes.                                                      

 

Smithson (2000: 326) names two advantages of OR as measure of ratio over those of the 𝜑𝜑-

coefficient: 

a) It also serves as a measure of weak perfect relationships. 

b) It stays the same, even when a row or column of the 2 x 2  table is multiplied by a 

factor. 

 

If the random sample is drawn from a population, the population OR (ω) is estimated with ω�  

where a, b, c and d are the sample frequencies. If b or c (or both) are zero, ω�  is undefined. 

The estimator introduced by Jewell (see Shoukri & Chaudhary, 2007) can then be used, 

namely 
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𝜔𝜔�𝐽𝐽 =
𝑉𝑉𝑎𝑎

(𝑏𝑏 + 1)(𝑎𝑎 + 1)
 . 

From Monte-Carlo simulations for n = 25, it appears that ω�J has a smaller bias and average 

squared error than other estimators such as ω� . 

 

Example 2 gives a near weak perfect relationship (the frequency of 5, which is near to zero). 

Here, OR was 3,02 and if the frequencies of the first row and column were 3 and 51, it would 

have changed to 5,552 and become infinitely large if the frequencies were 0 and 54. The 𝜑𝜑-

coefficient for Example 2 is 0,143 and increases to 0,26 if the first cell frequency 0 is taken. It 

only indicates that the relationship is far from perfect, which illustrates advantage a). 

 

Regarding advantage b), we refer to the remark in subsection 2.1.3, where two studies with 

different relative frequencies for the two categories of x produce different 𝜑𝜑-values, namely 

0,11 and 0,17. However, for these two studies, the 

OR values are the same: Study 1: (45 x 30) / (120 x 5) = 2,25 

                                         Study 2: (90 x 20) / (80 x 10) = 2,25 

In the same way as the rate ratio 𝜋𝜋1/𝜋𝜋2, OR is evaluated with regard to the distance from 1. 

Therefore, the natural logarithm of OR is sometimes easier to use, because the distance 

from 1 is then transformed to a distance from 0. 

If working with a random sample from a population, the population’s OR(𝜔𝜔) is estimated with 

𝜔𝜔�, where a, b, c and d are the sample frequencies. For large samples, it further holds true 

that 𝑙𝑙𝑛𝑛 (𝜔𝜔�) is approximately normally distributed with an average of 𝑙𝑙𝑛𝑛 (𝜔𝜔) and variance 

(Fleiss, 1994): 

                  𝑉𝑉𝑉𝑉𝑟𝑟[𝑙𝑙𝑛𝑛 (𝜔𝜔�)] = 1
𝑎𝑎

+ 1
𝑏𝑏

+ 1
𝑏𝑏

+ 1
𝑎𝑎

 .                                                      (15) 

Thus, a 100(1-𝛼𝛼)% CI for 𝑙𝑙𝑛𝑛 (𝜔𝜔) (with boundaries (L, U)) is 

                 𝑙𝑙𝑛𝑛 �𝑎𝑎𝑎𝑎
𝑏𝑏𝑏𝑏
� ± 𝑧𝑧𝛼𝛼/2�

1
𝑎𝑎

+ 1
𝑏𝑏

+ 1
𝑏𝑏

+ 1
𝑎𝑎

 ,                                                      (16) 

so that the CI  boundaries of 𝜔𝜔 are 

                  𝜔𝜔𝐿𝐿 = 𝑒𝑒𝐿𝐿     and     𝜔𝜔𝑈𝑈 = 𝑒𝑒𝑈𝑈.                                                       (17) 
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Additional applications of odds ratios are discussed in Fleiss (1994): 

a) When other variables (covariants) influence the response variable y (on top of 

grouping variable x), a logistic regression analysis can be done from which the 

OR value can be obtained directly. 

b) The Mantel-Haenszel estimator is another method to combine the 𝑙𝑙𝑛𝑛 (𝜔𝜔) values 

when the covariants in a) is categorical (and the data are thus divided into strata). 

 

Newcombe (2006) gives the following reasons why OR is the measure most used in 2 x 2  

frequency tables: 

• It has a natural role in logistic regression. 

• It is the only significant measure when the sampling is non-random, but 

retrospective case-control study designs are dealt with, which happens many 

times in epidemiological studies. 

• When the occurrence of an event (e.g., a disease) is rare, the value of OR is 

much the same as that of the risk ratio (RR), seeing that for values of a and c 

small in comparison to those of b and d, it follows that a / b ≈  a / (a+b) and   

c / d ≈  c / (c+d). 

 

However, Newcombe warns that the OR value always lies further from 1 than the RR value 

and the risk is thus exaggerated. Further, the OR is used as if it is the same as RR, which is 

only true in rare occurrences. 

Example 2 (continued) 

If the frequency table in Example 2 renders the results of a random sample, 𝜔𝜔� = 3,02 and 

the 90% CI for 𝑙𝑙𝑛𝑛 (𝜔𝜔): 

              𝑙𝑙𝑛𝑛(3,02) ± 1,645�1
5

+ 1
49

+ 1
49

+ 1
159

 = 1,105 ± 1,645 × 0,497 = (0,287; 1,923). 

            

Thus, 90% CI for 𝜔𝜔 is (1,333; 6,840), so that the population OR can be as small as 1,33  and 

as large as 6,84 with a 90% probability. 

 

For Example 1, if two random samples from the populations of persons with heart disease 

and those without this disease are drawn, the 95% CI for the OR is calculated as: 
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𝑙𝑙𝑛𝑛 �
78 × 61
42 × 59

� ± 1,96�
1

78
+

1
59

+
1

42
+

1
61

 = 𝑙𝑙𝑛𝑛(1,92) ± 1,96 × 0,07 = 0,652 ± 0,137 

= (0,515; 0,789).      

Thus, the 95% CI for 𝜔𝜔  has boundaries: 

                 𝜔𝜔𝐿𝐿 = 𝑒𝑒0,515 = 1,674; 𝜔𝜔𝑈𝑈 = 𝑒𝑒0,789 = 2,201. 

Here again, 𝜔𝜔 of the population varies from a small to a medium effect (see next 

subsection). 

 

2.1.10   Interpretation of OR as effect size 

 

According to Kline (2004a: 147) and Chinn (2000), OR can be transformed to a standardised 

difference analogous to 𝛿𝛿. Because 𝑙𝑙𝑛𝑛[𝑝𝑝1/(1 − 𝑝𝑝1)] and 𝑙𝑙𝑛𝑛[𝑝𝑝2/(1− 𝑝𝑝2)] both have a logistical 

distribution that is approximately normal with standard deviation 𝜋𝜋/√3 =1,81, the 

standardised difference becomes 

  𝛿𝛿𝑂𝑂𝑂𝑂 = 𝑙𝑙𝑛𝑛[𝑝𝑝1/(1−𝑝𝑝1)]−𝑙𝑙𝑛𝑛[𝑝𝑝2/(1−𝑝𝑝2)]
1,81

= 𝑙𝑙𝑙𝑙𝑔𝑔𝑖𝑖𝑙𝑙(𝑝𝑝1)−𝑙𝑙𝑙𝑙𝑔𝑔𝑖𝑖𝑙𝑙(𝑝𝑝1)
1,81

 .                                                 (18) 

 

Note that 𝑙𝑙𝑙𝑙𝑏𝑏𝑏𝑏𝑙𝑙(𝑝𝑝) = 𝑙𝑙𝑛𝑛[𝑝𝑝/(1 − 𝑝𝑝)]. The standardised difference 𝛿𝛿𝑂𝑂𝑂𝑂   can thus be identified 

similar to 𝛿𝛿, and the same guideline values can be used, so that 

small effect:              𝛿𝛿𝑂𝑂𝑂𝑂 = 0,2; 

medium effect:          𝛿𝛿𝑂𝑂𝑂𝑂 = 0,5; 

large effect:              𝛿𝛿𝑂𝑂𝑂𝑂 = 0,8. 

 

Because it follows from (18) that 𝜔𝜔 = 𝑒𝑒1,81𝛿𝛿𝑂𝑂𝑂𝑂 , it holds true that: 

small effect:              𝜔𝜔 = 1,44, take as 1,5; 

medium effect:           𝜔𝜔 = 2,48, take as 2,5; 

large effect:               𝜔𝜔 = 4,27, take as 4,25. 
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Although an OR larger than 1 indicates that the odds ratio of the one population is larger 

than the other one, it cannot necessarily be concluded that there is an important difference in 

odds ratios. As 0,5 and 0,8 per guideline values bring about medium and large effects, only 

the guideline values of 2,5 and 4,25 would suggest medium and large effects at OR values. 

 

On the basis of a survey in medical magazines in which 392 articles were relevant, Burnand 

et. al. (1990) propose the following guideline values for OR: 

• Significant: OR = 2,2 

• Substantially significant: OR = 2,5 

• Highly significant: OR = 4,0 

The last two guideline values concur with ‘medium’ and ‘large’ effects. 

 

An additional interpretation of OR is the following: 

Tritchler (1995) is of opinion that with two normal populations (Pop. 1 and Pop. 2) with 

averages 𝜇𝜇1 and 𝜇𝜇2 and the same standard deviation 𝜎𝜎, it holds true that  

E = P (classify x in Pop. 1 │x is from Pop. 2) 

   = P (classify x in Pop. 2 │x is from Pop. 1) 

    =  Φ�−𝛿𝛿
2
�,                                                                                                    (19) 

with Φ(t) the cumulative distribution function of a standard normal distribution, and 

                                              𝛿𝛿 = |𝜇𝜇1−𝜇𝜇2|
 𝜎𝜎

  

the standardised absolute difference in averages, as defined in Steyn (2012, Chapter 4). 

The special case in univariate populations of the linear classification rule in discriminant 

analysis (see Steyn, 2012, Chapter 8) transforms to the following: 

Classify x in Pop.1 if x > 𝜇𝜇1+𝜇𝜇2
2

 , if 𝜇𝜇1 > 𝜇𝜇2. 

Tritchler (1995) then proposes the joint probabilities of the two dichotomisations, x > c, x ≤ c, 

against Pop. 1, Pop. 2, as follows: 
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 Pop. 1 Pop. 2 
x > c (1-E).P(1) E.P(2) 
x ≤ c E.P(1) (1-E).P(2) 
 

where P(i) = P(x is from Pop. i). 

The odds ratio of this 2 x 2  table is therefore: 

                                           𝜔𝜔 =
�1−𝐸𝐸𝐸𝐸 �

� 𝐸𝐸
1−𝐸𝐸�

= �1−𝐸𝐸
𝐸𝐸
�
2
 ,                                                              (20) 

so that it follows from (19) that 

                                                𝜔𝜔 = �
1−Φ�−𝛿𝛿2�

Φ�−𝛿𝛿2�
�
2

.                                                      (21) 

When we use the guideline values of Cohen (1988), we obtain the following effects from 

Steyn’s (2012) equation (5.63) in Chapter 5: 

small effect:          𝛿𝛿 = 0,2: 𝜔𝜔 = 1,38; 

medium effect:       𝛿𝛿 = 0,5: 𝜔𝜔 = 2,25; 

large effect:           𝛿𝛿 = 0,8: 𝜔𝜔 = 3,64. 

These values of 𝜔𝜔 concur to a certain degree with those obtained from 𝛿𝛿𝑂𝑂𝑂𝑂 and those 

proposed by Burnand et.al. (1990). 

Here, the same warnings as in Steyn (2012, subsection 4.5.4) are applicable; the proposed 

guideline values must thus be handled with circumspection. 

 

2.2    Effect size of relationship between two nominal variables 

 

A significant measure of the degree to which the cell frequencies in a two-way frequency 

table deviate from the expected frequencies if no relation is assumed, is (Cohen, 1969, 

1977, 1988): 

              𝑤𝑤 = �𝑋𝑋2

𝑁𝑁
= �∑ (𝑓𝑓𝑖𝑖−𝑣𝑣𝑖𝑖)2

𝑁𝑁𝑣𝑣𝑖𝑖
𝑚𝑚
𝑖𝑖−1   ,                                                          (22) 

where 𝑓𝑓𝑖𝑖 is the i-th cell’s frequency, 𝑣𝑣𝑖𝑖 the expected frequency of cell i if no relationship (i.e 
the null hypothesis) is assumed and m = IJ, with I the number of rows and J the 



22 
 

number of columns in the frequency table. N is the total of the cell-frequencies 
(i.e. the total number of observations). 

𝑋𝑋2 is also the chi-square test statistic when a test is done (on the basis of a random sample) 

for a statistically significant relationship. 

 

The expected frequency of a cell (if there is no relationship) is: 

(row total) x (column total) / N (totals of row and column in which the cell falls), where N = 

sum of row totals  = sum of column totals = total frequency. 

 

Example 3: 

In Example B, Chapter 3 (Steyn, 2012) is the table (in which the column with the lecturers’ 

frequencies is ommitted) with frequencies and expected frequencies (in brackets): 

 Male students Female 
students 

Total 

Temperament SJ 57(64,79) 79(71,21) 136 
Temperament SP 29(24,77) 23(27,23) 52 
Temperament NT 23(20,01) 19(21,99) 42 
Temperament NF 12(11,43) 12(12,57) 24 
Total 121  133 254 
               

 𝑋𝑋2 = (57−64,79)2

64,79
+ (79−71,21)2

71,21
+ (29−24,77)2

24,77
+  (23−27,23)2

27,23
+ (23−20,01)2

20,01
+ (19−21,99)2

21,99
+

                              (12−11,43)2

11,43
+ (12−12,57)2

12,57
= 4,074,  

therefore 𝑤𝑤 = �4,074
254

= 0,127.                                                                                        

The measure 𝑤𝑤 can serve as an effect-size index to measure the relationship between two 

nominal variables (temperament type and gender of students in Example 3). It is clear that 

the more 𝑓𝑓𝑖𝑖 differs from 𝑣𝑣𝑖𝑖, the larger (𝑓𝑓𝑖𝑖 − 𝑣𝑣𝑖𝑖)2/𝑣𝑣𝑖𝑖  becomes and if there are large 

differences in most of the cells, 𝑋𝑋2 should be large. Because the size of 𝑋𝑋2 is also influenced 

by N,  𝑋𝑋
2

𝑁𝑁
  is a more significant measure. In the special case of 2 x 2  tables, 

                        𝜑𝜑2 = 𝑋𝑋2

𝑁𝑁
= 𝑤𝑤2,                                                                  (23) 

which is also a reason why �𝑋𝑋2

𝑁𝑁
 is used as an effect-size index to indicate a relationship. 
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Smithson (2000: 313) points out that, except for the fact that N influences the size of 𝑋𝑋2, the 

number of cells also plays a role in the sense that the more cells there are, the larger 𝑋𝑋2 

becomes (the number of terms in the sum becomes larger). To compensate for this, 

Cramer’s V (see also Cohen, 1969, 1977, 1988) can be used: 

                      𝑉𝑉 = � 𝑋𝑋2

𝑁𝑁(𝑘𝑘−1)
= 𝑤𝑤

√𝑘𝑘−1
 ,                                                               (24) 

where k = min(I, J). 

In Example 3, k = 2, because I = 4 and J = 2, so that V has the same value as 𝑤𝑤. 

 

Remark: 

For smaller tables, V and 𝑤𝑤 are almost the same, but where 𝑤𝑤 can be interpreted like a 

correlation because it lies between 0 and 1, the same cannot be said of V in larger tables. 

For k > 2, the maximum value of V becomes smaller than 1, so that the size of the table has 

an influence on the value of V. 

 

2.2.1  Estimation of w 

When a random sample is selected from a population, the effect-size index 𝑤𝑤 can be 

estimated with 𝑤𝑤�  by using the sample’s frequencies. 

For smaller samples, 𝑤𝑤 is overestimated and the bias of 𝑤𝑤2 is approximately (𝐼𝐼−1)(𝐽𝐽−1)
𝑛𝑛

 where 

n is the sample size (see Steyn, 2002). 

Therefore, 𝑤𝑤 can rather be estimated by: 

 𝑤𝑤� = �𝑤𝑤�2 − (𝐼𝐼−1)(𝐽𝐽−1)
𝑛𝑛

 ,                                                                              (25) 

which is approximately unbiased for 𝑤𝑤. 

 

Example 4 (Smithson, 2000): 

By using the Crosspatch program of Smithson, the following frequencies were obtained in a 

random sample in which the preferences of 10 to 40-year-old persons in three age groups 

were asked for four kinds of shoes: 
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                                                               Shoe 

Age Kind 1 Kind 2 Kind 3 Kind 4 Total 
10 - 19 86(44,0) 5(12,7) 38(54,6) 14(31,7) 143 
20 - 29 4(18,8) 14(5,4) 4(23,3) 39(13,5) 61 
30 - 39 14(41,2) 11(11,9) 87(51,2) 22(29,7) 134 
Total 104 30 129 75 338 
 

𝑋𝑋2 = 194,01 (p <  0,0001), 𝑤𝑤� = �194,01/338 = 0,758 

𝑉𝑉� = 𝑤𝑤�
√2

= 0,536 (because k = 3). 

There is a statistically significant relationship (p < 0,0001). The estimation of 𝑤𝑤�  of 0,758 can 

be used to obtain the effect of relationship between the kind of shoe and age in the 

population and is practically unbiased, because the bias of 𝑤𝑤�2 is approximately (2 x 3) / 338 

= 0,018, so that 𝑤𝑤� = �0,7582 − 0,018 = 0,746. 

 

2.2.2 Confidence interval for w 

 

According to Johnson et.al. (1995: 467), the chi-square statistic 𝑋𝑋2 has approximately a non-

central chi-square distribution with (I – 1)(J – 1) degrees of freedom and non-centrality 

parameter nsp = n𝑤𝑤2. As in subsection 2.1.4 for φ, it is now possible to determine a      

100(1 - 𝛼𝛼)% CI for nsp by means of a computer program, and to obtain from that an 

approximate CI for 𝑤𝑤 and V with, say, lower and upper bounds (L, U). Then, the CI for 𝑤𝑤 has 

boundaries (�𝐿𝐿/𝑛𝑛 ,�𝑈𝑈/𝑛𝑛) and those of V is (�𝐿𝐿/𝑛𝑛(𝑘𝑘 − 1) ,�𝑈𝑈/𝑛𝑛(𝑘𝑘 − 1)). The calculation is 

done by the SAS program CI_w, but Excel can also be used as an alternative for SAS by 

using the Nonparametric Effect Size and CI Calculator.xls.  

Example 4 (continued): In Example 4, the 95% CI for 𝑤𝑤 is (0,640; 0,855), which means that 

the unknown population w can vary between 0,64 and 0,86 with a probability of 0,95. For V, 

the CI is (0,45; 0,61). 

 

2.2.3  Guideline values for w 

Cohen (1969, 1977, 1988) links guideline values for 𝑤𝑤 to a table in which w and Cramer’s V 

are given for different values of k. Table 4 provides an excerpt from it and uses the 

relationship in (24). 
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Table 4 

Values of w  and concordant V                    

k 2 3 4 5 6 
w = 0,1  0,1 0,071 0,058 0,05 0,045 
w = 0,3 0,3 0,212 0,173 0,15 0,134 
w = 0,5 0,5 0,354 0,289 0,25 0,224 

 

Take note that when k = min(I, J) = 2, w = V. When I = J = 2, it also holds true that w = 𝜑𝜑. 

The guideline values for w could thus be chosen on the basis of those for 𝜑𝜑: 

• small effect:         w = 0,1; 

• medium effect:     w = 0,3; 

• large effect:          w = 0,5. 

 

However, Cohen warns that perhaps these guidelines are not realistic for larger tables. 

Because Cramer’s V is an adjusted index for larger tables, Table 4 could then be used. For 

example, if I = 6 and J = 10, k = 6 and V-values of 0,224, 0,134 and 0,045 can already be 

viewed as large, medium and small effects. 

In Example 3, w = 0,127 and because k = 2 in Table 4, it is a small effect. For a larger table 

with the same w-value, it could be viewed as a medium effect if k was, for example, larger 

than 4. In Example 4, even the lower bound of the 95% CI (i.e., 0,45) gives us the right to 

classify it as a large effect, because at k = 3, a large effect is 0,354. 

 

2.3  Effect sizes in 2 x 2  frequency tables with dependent pairs 

 

Suppose a diagnostic test is applied to persons in order to classify them as positive (they 

have, e.g., contracted a disease), or negative (they are healthy). If both groups are treated 

thereafter, the test can also be done on the same persons after the treatment. A 2 x 2  

frequency table of the results can now be drawn up. Take note how it differs from Table 1 in 

subsection 2.1: 
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Table 5 

The 2 x 2  frequency table of the same people before and after treatment 

 After treatment: 
positive 

After treatment: 
negative 

Total 

Before treatment: 
positive 

a b a + b 

Before treatment: 
negative 

c d c + d 

Total a + c b + d n 
 

In Table 5, a represents the number of persons who were positive before and after 

treatment, whereas d represents the number of persons who stayed negative after 

treatment. The treatment had therefore no effect on these persons. Usually, there is no 

interest in the latter, but rather in those who have changed from before to after their 

treatment. In the table, b represents ill persons (thus positive) who healed (negative) after 

treatment, whereas c represents healthy persons who became ill after treatment. 

To test the null hypothesis that the probability of persons being positive before and after the 

treatment is the same, must 

𝑝𝑝𝑎𝑎 + 𝑝𝑝𝑏𝑏 = 𝑝𝑝𝑎𝑎 + 𝑝𝑝𝑏𝑏,                                                                                 (26) 

where 𝑝𝑝𝑎𝑎 is the probability that a person is before and after the treatment positive et cetera. 

For the null hypothesis that the probability of persons being negative before and after 

treatment is the same, must 

𝑝𝑝𝑏𝑏 + 𝑝𝑝𝑎𝑎 = 𝑝𝑝𝑏𝑏 + 𝑝𝑝𝑎𝑎.                                                                                  (27) 

Both (26) and (27) imply that 

𝐻𝐻0: 𝑝𝑝𝑏𝑏 = 𝑝𝑝𝑏𝑏   against the alternative 𝐻𝐻1: 𝑝𝑝𝑏𝑏 ≠ 𝑝𝑝𝑏𝑏 . 

 

In the case of a complete population (of size N), 𝑝𝑝𝑏𝑏 = 𝑏𝑏
𝑁𝑁

 and 𝑝𝑝𝑏𝑏 = 𝑏𝑏
𝑁𝑁

 , whereas in a random 

sample of size n from this population, the probabilities can be estimated as �̂�𝑝𝑏𝑏 = 𝑏𝑏
𝑛𝑛
  and 

    �̂�𝑝𝑏𝑏 = 𝑏𝑏
𝑛𝑛
 . 

In the case of a sample, the test statistic of the McNemar test is: 

𝑋𝑋2 = (|𝑏𝑏−𝑏𝑏|−1)2

𝑏𝑏+𝑏𝑏
 ,                                                                                        (28) 
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with 𝑋𝑋2 under 𝐻𝐻0 approximately  chi-square distributed with 1 degree of freedom, provided 

that b or c is not too small (usually b + c > 25). 

 

In cases where b and c are small, the binomial test can be used to test 𝐻𝐻0, where only the 

number of persons who have changed (i.e., the b and c frequencies) are viewed. 

Let 𝑝𝑝𝑏𝑏∗ = 𝑏𝑏
𝑏𝑏+𝑏𝑏

  be the probability that some persons who have changed, were positive before 

treatment and became negative afterwards. Similarly, let  𝑝𝑝𝑏𝑏∗ = 𝑏𝑏
𝑏𝑏+𝑏𝑏

 , so that 

𝐻𝐻0: 𝑝𝑝𝑏𝑏 = 𝑝𝑝𝑏𝑏 = 𝑝𝑝𝑏𝑏∗   =  𝑝𝑝𝑏𝑏∗ = 0,5, which can be tested for one proportion with the binomial test. 

 

2.3.1 Effect sizes 

(a) From the McNemar test statistic follows that: 

𝑤𝑤𝑀𝑀 =  � 𝑋𝑋2

𝑏𝑏+𝑏𝑏
 .                                                                                             (29) 

The effect size 𝑤𝑤𝑀𝑀 is then interpreted in the same way as w previously was (see subsection 

2.2). 

 

(b) From the probability (proportion) of change from positive to negative (Cohen, 1988; 

Steyn, 2012: Chapter 5): 

g = 𝑝𝑝𝑏𝑏∗ − 0,5  if b ≥ c, otherwise g =  𝑝𝑝𝑏𝑏∗ − 0,5.                                              

 

According to Cohen (1988), the guideline values are: small effect when g = 0.05; medium 

effect when g = 0,15; and large effect when g = 0,25. 

 

(c) Odds ratio of change from before to after treatment: 

𝑂𝑂𝑂𝑂𝑀𝑀 = 𝑏𝑏
𝑏𝑏
 .                                                                                                 (30) 

Because 𝑂𝑂𝑂𝑂𝑀𝑀 = 𝑏𝑏/(𝑏𝑏+𝑏𝑏)
𝑏𝑏/(𝑏𝑏+𝑏𝑏)

,  it gives the ratio of probability of change from positive to negative to 

that of change from negative to positive (only for persons whose condition changed). If 
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positive means ‘ill’, a large 𝑂𝑂𝑂𝑂𝑀𝑀 would mean a small risk, whereas a small 𝑂𝑂𝑂𝑂𝑀𝑀 would bring 

about a large risk. 

 

OR is also called the Mantel-Haenszel odds ratio (see Olivier et. al., 2017) and is indicated 

as 𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀. The relationship between the effect size g and 𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀 is then  

𝑏𝑏 = ½ 𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀−1
𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀+1

 , so that 𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀 = 1+2𝑔𝑔
1−2𝑔𝑔

 .  

Cohen’s guideline values (based on g) then produce the following for 𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀  (and thus for 

OR): small effect - 𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀 = 1,22;  medium effect - 𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀 = 1,86; and large effect - 𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀 = 

3,00.  

Take note: 

• If working with complete populations, the ratios mentioned above are in reality the 

same as in the populations, whereas in the case of random samples, they become 

estimated ratios. 

•  𝑂𝑂𝑂𝑂𝑀𝑀 = 𝑏𝑏
𝑏𝑏

=  𝑏𝑏/𝑁𝑁
𝑏𝑏/𝑁𝑁

 , so that in the interpretation of 𝑂𝑂𝑂𝑂𝑀𝑀 , the ratios could be meant to 

come from either (b + c)  or N (where N could be the population or sample size).  

 

2.3.2 Confidence intervals in samples  

 

(a) Effect size 𝑤𝑤𝑀𝑀: If n is large, 𝑋𝑋2 has approximately a non-central chi-square distribution 

with 1 degree of freedom and non-centrality n𝑤𝑤𝑀𝑀2 . See subsection 2.2.2 for computer 

programs that determine an approximate 100(1- α)% CI for the population value of 𝑤𝑤𝑀𝑀. 

For SAS’s CI_w, the inputs are X2 = 𝑋𝑋2, df = 1 to first determine the 100(1- α)% CI of 

non-centrality as (nc_lower, nc_upper). The CI of  𝑤𝑤𝑀𝑀  is then (nc_lower/(b+c), 

(nc_upper/(b+c). It can also be calculated in Excel’s Nonparametric Effect Size and CI 

Calculator.xls.  

(b) Effect size g: For n large, 𝑍𝑍 = (𝑝𝑝𝑏𝑏
∗−0,5)

�𝑝𝑝𝑏𝑏
∗ (1−𝑝𝑝𝑏𝑏

∗)/(𝑏𝑏+𝑏𝑏)
  standard normally distributed, so that the 

100(1- α)% CI for g is given by: 

g ± 𝑧𝑧𝛼𝛼/2�𝑝𝑝𝑏𝑏∗(1 − 𝑝𝑝𝑏𝑏∗)/(𝑏𝑏 + 𝑎𝑎).                                                       (31) 
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(c) Effect size for 𝑂𝑂𝑂𝑂𝑀𝑀: Similar to rate or risk ratios in subsection 2.1.8, it holds true for n 

large that  𝑙𝑙𝑛𝑛 �𝑏𝑏
𝑏𝑏
� is approximately normally distributed with 𝑉𝑉𝑉𝑉𝑟𝑟 �𝑙𝑙𝑛𝑛 �𝑏𝑏

𝑏𝑏
�� = 1

𝑏𝑏
 +1
𝑏𝑏
 .  Thus, the 

100(1- α)% CI for 𝑙𝑙𝑛𝑛 �𝑏𝑏
𝑏𝑏
�   is: 

     𝑙𝑙𝑛𝑛 �𝑏𝑏
𝑏𝑏
� ± 𝑧𝑧𝛼𝛼/2�

1
𝑏𝑏

 + 1
𝑏𝑏
 ,                                                                        (32)  

from which (𝑒𝑒𝐿𝐿, 𝑒𝑒𝑈𝑈) forms CI for 𝑂𝑂𝑂𝑂𝑀𝑀 = 𝑏𝑏
𝑏𝑏
 , with L and U the lower and upper confidence 

limits  of (32). 

Example 5      

In a sample of 164 persons, it was first determined whether they had contracted a certain 

disease before treating them. After the treatment was completed, the persons were tested 

for the disease again. The following 2 x 2  frequency table renders the results:      

                                                   After treatment: 
positive (ill) 

After treatment: 
negative (healthy) 

Total 

Before treatment: 
positive (ill) 

42 44 (b) 86 

Before treatment: 
negative (healthy) 

14 (c) 64 78 

Total 56 108 164 
 

 

Only the frequencies 44 (was ill before but is healthy after treatment) and 14 (was healthy 

before but is ill after treatment) are viewed further. 

(a) Effect size 𝑤𝑤𝑀𝑀: 𝑋𝑋2 = (|44−14|−1)2

44+14
 = 14,5, 𝑤𝑤𝑀𝑀 =  �14,5

58
 = 0,5. 

The computer programs in SAS and the Excel spreadsheet (see subsection 2.1) give the 

approximate 95% CI for 𝑤𝑤𝑀𝑀 as: (0,24; 0,76); there is thus a large effect that can also be 

medium with a 95% probability (if looking at the guideline values for w in, e.g., subsection 

2.2.3). 

(b) Effect size g: 𝑝𝑝𝑏𝑏∗ =  44
58

 = 0,76, so that g = 0,76 – 0,5 = 0,26 – also a large effect (see 

subsection 2.3.1 [b] above).  

The approximate 95% CI: 0,26 ± 1,96 �0,76(1− 0,76)/58  = (0,15; 0,37), so that the 

population value of g can also have a medium effect with a probability of 95%. 
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(c) Effect size of 𝑂𝑂𝑂𝑂𝑀𝑀: 𝑂𝑂𝑂𝑂𝑀𝑀 = 44/14 = 3,1, which indicates a large effect according to the 

guideline values above. The approximate 95% CI for 𝑙𝑙𝑛𝑛(𝑂𝑂𝑂𝑂𝑀𝑀): 𝑙𝑙𝑛𝑛(3,1) ± 1.96� 1
44

 + 1
14

 = 

(0,82; 1,73), so that die 95% CI for approximate 𝑂𝑂𝑂𝑂𝑀𝑀 is: (𝑒𝑒0,82, 𝑒𝑒1,73) = (2,3; 5,6); the 

population effect thus tends towards medium with a 95% probability.  

 

                                                                                                                     

2.4  Dependent sets of dichotomous measurements 

Where dependent pairs of dichotomous measurements led up to McNemar’s test with 

accompanying effect sizes, we now view the case of sets of dependent dichotomous 

measurements of three or more on a unit (block, person, object etc.).  

Example 6: 

Suppose there are 10 persons who have to try and solve three logical problems (A, B and C) 

and then obtain the correct (indicated by 1) or wrong (indicated by 0) solution. The data are 

rendered in the first four columns of the following table: 

Person A B C 𝐿𝐿𝑖𝑖 
 

𝐿𝐿𝑖𝑖2 
 

1 0 0 1 1 1 
2 1 1 1 3 9 
3 1 1 0 2 4 
4 0 0 1 1 1 
5 1 1 1 3 9 
6 1 0 1 2 4 
7 1 1 1 3 9 
8 0 1 0 1 1 
9 0 0 0 0 0 
10 0 0 1 1 1 
Total 5 5 7 17 39 
 

The Cochran Q-test is used to test the hypothesis of equal proportions of correct solutions 

for the logical problems A, B and C (see Siegel, 1956).  

Let Gj  be the j-th number of successes over n units (in the example, the number of correct 

solutions over the 10 persons) of measurement j, and k the number of measurements (in the 

example, there are three logical problems); let Li  be the total number of successes for unit i.  
The test statistic is: 
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𝑄𝑄 =
(𝑘𝑘−1)�𝑘𝑘 ∑ 𝐺𝐺𝑗𝑗

2−(∑ 𝐺𝐺𝑗𝑗)𝑘𝑘
𝑗𝑗=1

2
 𝑘𝑘

𝑗𝑗=1 �

𝑘𝑘 ∑ 𝐿𝐿𝑖𝑖𝑛𝑛
𝑖𝑖=1 −∑ 𝐿𝐿𝑖𝑖

2𝑛𝑛
𝑖𝑖=1

 .                                                                       (33) 

To test the null hypothesis of equal proportions for k measurements, the fact is used that 

under the null hypothesis, Q is approximately chi-square distributed with k-1 degrees of 

freedom for n large. 

In the example, 𝑄𝑄 = (3−1)�3(25+25+49)−(5+5+7)2�
3 (17)−39

 = 16/12 = 1,33 (p = 0,51). 

Thus, the hypothesis of equal proportions is not rejected. 

2.4.1 Effect size 

 

With Q approximately chi-square distributed, the following effect size is proposed (the same 

as in subsections 2.1, 2.2 and 2.3): 

𝑤𝑤𝑄𝑄 = �𝑄𝑄
𝑁𝑁

 ,                                                                                                     (34) 

where N is the population or sample size, depending whether the data are based on a 

complete population or a random sample drawn from it. 

Here, the guideline values of Cohen (1988) can also be applicable, namely  

• small effect:        𝑤𝑤𝑄𝑄 = 0,1; 

• medium effect:    𝑤𝑤𝑄𝑄 = 0,3; 

• large effect:         𝑤𝑤𝑄𝑄 = 0,5.  

In Example 6, 𝑤𝑤𝑄𝑄 = �1,33
10

 = 0,36, which is a medium effect. 

 

2.4.2 Confidence interval for population 𝑤𝑤𝑄𝑄 

 

Similar to the previous sections, an approximate CI can be calculated by using SAS or Excel 

(see subsection 2.1). However, in Example 6, it becomes clear that n = 10 is too small to use 

this method. We thus give another example: 

 

Example 7: 
In a sample of 405 respondents, three different markers, indicating risk of stress-related 

illnesses, were compared. All three markers were applied to each respondent. It was 
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determined at each marker whether respondents were at risk. The result of Cochran’s Q-test 

was: Q = 35,02 (p < 0,001).  

With n = 405 and k = 3, it then holds true that: 𝑤𝑤𝑄𝑄 = �35,02
405

  = 0,29 and 95% CI: (0,19; 0,39). 

Therefore, although the difference of the three markers’ proportions of risks is highly 

significant (p < 0,001), it is only a medium effect with effect size 𝑤𝑤𝑄𝑄 = 0,29. The real effect of 

the population lies with a 95% probability between 0,19 and 0,39, which could even point to 

a small effect.   

 

3.  Relationships between dependent variables 

In Chapter 5 (Steyn, 2012), the author viewed linear relationships between two continuous 

variables whose degree of relationship is measured by the Pearson correlation coefficient. 

The underlying assumption was that these variables have a bivariate normal distribution, 

with correlation coefficient ρ. In cases where normality does not necessarily holds true 

and/or the variables are discrete or ordinal and the relation non-linear, the Pearson 

correlation is not always a good measure of relationship. However, there exist various 

measures based on ranks, of which the rank correlation coefficients of Spearman (rs) and 

Kendall’s tau (𝜏𝜏) are going to be discussed here; they can also be used as effect sizes. 

When more than two variables are under discussion, we discuss Kendall’s coefficient of 

concordance (W) (which is also based on ranks) as measure of relationship. 

 

3.1  Spearman’s rank correlation 

This is the correlation between the ranks of two continuous (or interval-scaled) variables and 

is a measure of monotone association. The relationship between, for example, tail and wing 

lengths of birds is very clear if one views the following scatter plot: 
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Although the least squares straight line indicates otherwise on the diagram, there is more 

probably a monotone ascending relation with the Spearman rank correlation (rs = 0,93) as 

measure. The Pearson correlation of r = 0,87 would provide the measure of linear 

relationship if this would be assumed. 

Suppose X and Y are continuous variables, with RX  and RY  as their ranks. The Pearson 

correlation between RX  and RY  gives the Spearman rank correlation rs. A simple formula that 

can be derived from this, is: 

𝑟𝑟𝑠𝑠 = 1 − 6∑ 𝑎𝑎𝑖𝑖
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛(𝑛𝑛2−1)

,                                                                                          (35) 

where 𝑎𝑎𝑖𝑖 = 𝑂𝑂𝑋𝑋𝑖𝑖 −  𝑂𝑂𝑌𝑌𝑖𝑖 . 

 

Example 8 (Wikipedia):  

Ten children’s IQ and hours/week in front of the TV are determined:  

IQ (X) 
Hours 
TV (Y)           RX            RY                  d                                       

              
d2        

86 2 1 1 0 0 

97 20 2 6 -4 16 

99 28 3 8 -5 25 

100 27 4 7 -3 9 

101 50 5 10 -5 25 

103 29 6 9 -3 9 

106 7 7 3 4 16 
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110 17 8 5 3 9 

112 6 9 2 7 49 

113 12 10 4 6 36 

    

�𝑎𝑎2:      194 

 

Now, 𝑟𝑟𝑠𝑠 = 1 − 6×194
10(102−1)

 = 1 – 1,176 = -0,176. 

Because of the unexpected values of the first child (with an IQ of 86 and Hours of TV of 2), 

there is almost no linear relationship (r = -0.07), whereas there exists a good negative 

relationship (r = -0,62), as well as a good monotone descending relationship (𝑟𝑟𝑠𝑠 = -0,62), 

without that child. 

3.1.1 Effect size 

Because 𝑟𝑟𝑠𝑠  measures monotone associations, which are a generalisation of linear 

relationships, 𝑟𝑟𝑠𝑠  can be viewed as an effect size of monotone associations, similar to that of 

r  for linear relationships.Therefore, the guideline values of Cohen (1988) for correlation r of 

0,1 (small effect), 0,3 (medium effect) and 0,5 (large effect) are proposed here too. 

In the example of the birds’ tail length versus their wing lengths, 𝑟𝑟𝑠𝑠  = 0,93 was a large effect 

and in Example 10, 𝑟𝑟𝑠𝑠  = -0,18 was a small effect. 

3.1.2 Confidence interval for population ρs 

With the Pearson correlation coefficient r, the following transformation was used (see 

Chapter 5, Steyn, 2012):  

𝐹𝐹(𝑟𝑟) = 1
2
𝑙𝑙𝑛𝑛 1+𝑟𝑟

1−𝑟𝑟
 ,                                                                                         (36) 

which means that for larger values n, F(r) is approximately normal with a mean of F(ρ) and 

variance of 1/(n - 3), and with ρ the population correlation coefficient. 

However, with Spearman’s rank correlation 𝑟𝑟𝑠𝑠 , it holds true (see Fieller et.al., 1957) that for n 

large, 

�𝑛𝑛−3
1,06

𝐹𝐹(𝑟𝑟𝑠𝑠 ) has an approximate N(0; 1) distribution. Then, the approximate 100(1- α)% CI for 

F(ρs) is 

𝐹𝐹(𝑟𝑟𝑠𝑠 ) ± 𝑧𝑧𝛼𝛼/2 �
1,06
𝑛𝑛−3

 .                                                                                      (37) 
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Take 𝐹𝐹(𝑟𝑟 𝑠𝑠𝐿𝐿) and 𝐹𝐹(𝑟𝑟𝑠𝑠𝑈𝑈) as the lower and upper bounds of the CI in (37); then, the              

100(1- α)% CI for ρs  becomes (𝑟𝑟 𝑠𝑠𝐿𝐿;  𝑟𝑟 𝑠𝑠𝑈𝑈),    

with 𝑟𝑟 𝑠𝑠𝐿𝐿 =  𝑒𝑒
2𝐹𝐹(𝑟𝑟 𝑠𝑠𝑠𝑠)−1
𝑒𝑒2𝐹𝐹(𝑟𝑟 𝑠𝑠𝑠𝑠)+1

 and 𝑟𝑟 𝑠𝑠𝑈𝑈 =  𝑒𝑒
2𝐹𝐹(𝑟𝑟 𝑠𝑠𝑠𝑠)−1
𝑒𝑒2𝐹𝐹(𝑟𝑟 𝑠𝑠𝑠𝑠)+1

 .                                                 (38)   

 

Example 8 (continued): 

In Example 8, 𝑟𝑟𝑠𝑠 = -0,176 and n = 10, so that the approximate 95% CI for ρs is obtained as 

follows: 𝐹𝐹(−0,176) = 1
2
𝑙𝑙𝑛𝑛 1−0,176

1+1,176
 = -0,178,  

so that 𝐹𝐹�𝑟𝑟 𝑠𝑠𝐿𝐿� = −0,178− 1,96�1,06
7

 = -0,940 and similarly, 𝐹𝐹�𝑟𝑟 𝑠𝑠𝑈𝑈� = 0,585. Then, 

𝑟𝑟 𝑠𝑠𝐿𝐿 =  𝑒𝑒
2(−0,940)−1
𝑒𝑒2(−0,940)+1

 = -0,74 and 𝑟𝑟 𝑠𝑠𝑈𝑈 =  𝑒𝑒
2(0,585)−1
𝑒𝑒2(0,585)+1

 = 0,53. 

As a result of the very small sample, the 95% CI for ρs  is very wide. With a sample size of 

100, the interval would have narrowed to: (-0,36; 0,03). 

 

3.2  Kendall’s tau 

This is another measure of relationship and is (similar to Spearman) based on ranks. The 

original measurements can also be continuous again, but not necessarily normally 

distributed. The requirement is (similar to Spearman) that the measurements must be at 

least ordinal to obtain ranks from them. Siegel (1956) explains in the following way how to 

proceed when calculating this measure: 

Suppose two judges A and B had to arrange the same four articles from 1 to 4. The ranks 

were the following: 

Judge Article 1 Article 2 Article 3 Article 4 

A 3 4 2 1 

B 3 1 4 2 

 

Next, arrange them according to Adjudicator A: 

Judge Article 4 Article 3 Article 1 Article 2 

A 1 2 3 4 

B 2 4 3 1 
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Now, begin with the first rank of B, namely 2, and count how many articles to the right of it 

have larger ranks (2 larger: 4 and 3) and how many have smaller ranks (1 smaller: 1). Do the 

same with the second rank to the right of 2, namely 4. There are no ranks larger than 4, but 

there is 1 smaller (1). With the following rank, namely 3, there is only 1 smaller (1).  

Total larger = 2 + 0 + 0 = 2. 

Total smaller = 1 + 2 + 1 = 4. 

The difference of larger totals and smaller totals = -2. Indicate it with S. 

The maximum value that S can assume is when A and B award the same ranks, that is, B 

also awards 1, 2, 3 and 4. There are 3 counts (2, 3 and 4) larger than 1; 2  counts (3 and 4) 

larger than 2; and there is only 1 count (4) larger than 3. Counts smaller than 1, 2 and 3 are 

0, so that  S = 3 + 2 + 1 – (0 + 0 + 0) = 6.  

The ratio S / 6 now provides a measure of relationship between the ranks awarded by A and 

B, namely -2 / 6 = -0,33, known as Kendall’s tau (𝜏𝜏).   

In general, with n entities (e.g., persons, or articles as in the example) awarded ranks with 

regard to two variables (e.g., aspects, judges as in the example, or tests), Kendall’s 𝜏𝜏 

becomes:  

𝜏𝜏 = 𝑇𝑇𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙 𝑙𝑙𝑎𝑎𝑟𝑟𝑔𝑔𝑒𝑒𝑟𝑟−𝑇𝑇𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙 𝑠𝑠𝑚𝑚𝑎𝑎𝑙𝑙𝑙𝑙𝑒𝑒𝑟𝑟
𝑛𝑛(𝑛𝑛−1)/2

= 2𝑆𝑆
𝑛𝑛(𝑛𝑛−1) 

.                                                              (39) 

Take note that S’s maximum value with n ranks can be obtained as follows: In the row of 

ranks 1, 2, 3, ...., n, there are (n-1) ranks larger than 1, (n-2) ranks larger than 2, ...., and 1 

larger than (n-1), which thus gives a total of  

(n-1) + (n-2) +.... + 1 = n(n-1)/2. 

 

Example 9 (Siegel, 1956)  

Suppose 12 persons’ counts of ‘Strive for Status’ and ‘Authoritarianism’ are known. The 

relationship between the two aspects can be determined from the ranks awarded to each of 

the aspects. Without indicating the original count for each person, the following table already 

provides the ranks of ‘Strive for Status’ (X) 1 to 12, together with the ‘Authoritarianism’ (Y) 

ranks:  
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X 1 2 3 4 5 6 7 8 9 10 11 12 

Y 1 5 2 6 7 3 4 10 11 8 9 12 

    

Total larger = 11 + 7 + 9 + 6 + 5 + 6 + 5 + 2 + 1 + 2 + 1 = 55. 

Total smaller = 0 + 3 + 0 + 2 + 2 + 0 + 0 + 2 + 2 + 0 + 0 = 11. 

S = 55 – 11 = 44 and n = 12, so that   𝜏𝜏 =  2×44 
12×11 

 = 0,67. 

Because 𝜏𝜏 is a different measure of relationship from Spearman’s rank correlation 𝑟𝑟𝑠𝑠 , the 

values will differ. For Example 12, 𝑟𝑟𝑠𝑠 = 0,82. Because 𝑟𝑟𝑠𝑠  is the Pearson correlation of two 

rank sets, its value could be interpreted similarly to the Pearson r. The question, though, is: 

How is the value of 𝜏𝜏 interpreted? In the same way as with other correlation measures, it 

holds true that  -1 ≤ 𝜏𝜏 ≤ 1 and near 0-values indicate no relationship, near -1 a good 

negative relationship, and near 1 a good positive relationship. According to Daniels (1950), it 

holds true that: 

(2𝑟𝑟𝑠𝑠 − 1)/3 ≤ 𝜏𝜏 ≤ (2𝑟𝑟𝑠𝑠 + 1)/3. 

It is thus difficult to interpret 𝜏𝜏 in terms of 𝑟𝑟𝑠𝑠 . 

 

3.2.1 Effect size 

For n > 10, it holds approximately true (Siegel, 1956) that for 𝜏𝜏 the population value and �̂�𝜏 

the sample value: 

 �̂�𝜏 has approximately an N(𝜏𝜏,𝜎𝜎𝜏𝜏2) distribution with  

𝜎𝜎𝜏𝜏2 = 2(2𝑛𝑛+5)
9𝑛𝑛(𝑛𝑛−1)

 .                                                                                          (40) 

Now, the effect size is similar to that of w in subsections 2.1 to 2.3, which of the form 𝑤𝑤 =

 �𝑋𝑋2

𝑛𝑛
 , where 𝑋𝑋2 chi-square is distributed with 1 degree of freedom. Thus, 𝑋𝑋 = 𝑍𝑍  is standard 

normally distributed, so that it is the same as 𝑟𝑟 =  𝑍𝑍
√𝑛𝑛

 . Now, take 𝑍𝑍 =  𝜏𝜏�
𝜎𝜎𝜏𝜏2

 ,  then the effect size  

𝑟𝑟𝜏𝜏 =  𝜏𝜏�

�𝑛𝑛𝜎𝜎𝜏𝜏2
=  3 𝜏𝜏�√𝑛𝑛−1

�2(2𝑛𝑛+5)
 .                                                                               (41) 

The interpretation of 𝑟𝑟𝜏𝜏 is similar to that of w, namely 𝑟𝑟𝜏𝜏 = 0,1 – small effect; 𝑟𝑟𝜏𝜏 = 0,3 – 

medium effect; and 𝑟𝑟𝜏𝜏 = 0,5 – large effect. 
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Example 9 (continued): 

Here, �̂�𝜏 = 0,67 and n = 12, so that 𝑟𝑟𝜏𝜏 =  3 ×0,67√11
�2(2×12+5)

 = 0,88, which is a large effect. 

 

3.2.2 Confidence interval for population 𝑟𝑟𝜏𝜏 

From the fact that for larger n, �̂�𝜏 had approximately an N(𝜏𝜏,𝜎𝜎𝜏𝜏2) distribution, follows that the 

approximate 100(1- α)% CI is given for the population 𝑟𝑟𝜏𝜏 by: 

𝑟𝑟𝜏𝜏 ± 𝑧𝑧𝛼𝛼/2 /√𝑛𝑛 .                                                                                           (42) 

Example 9 (continued): 

The 95% CI for population 𝑟𝑟𝜏𝜏  is 0,88 ± 1,96/√12  = (0,31; 1,45), which is very wide as a 

result of the small sample and entails that the effect size can, with a 95% probability, even 

be of medium effect. 

 

3.3   Kendall’s coefficient of concordance 

In the previous two sections, measures of relationship between pairs of interval scale or 

ordinal measures were viewed by using ranks. However, if three or more repeated 

measurements per block or unit (i.e., a person or object) are determined, Kendall’s 

coefficient of concordance gives a measure of relationship between the measurements.  

 

Example 10  

Twelve patients receive three treatments each. In the following table, ranks are awarded for 

the counts of the 12 patients at each treatment. As before, averages of ranks that compete 

at equal values were awarded (e.g., with Treatment 1, the average rank of the two values 

178 was 3,5). The last column (Totals) gives the sum of the ranks in the jth row (i.e., the 

Rjs). 

Patient Treatment 
1 

Ranks Treatment 
2 

Ranks Treatment 
3 

Ranks 
  

1 2 3 Totals 
1 209 5 88 1,5 109 7 13,5 
2 412 12 388 11 142 10,5 33,5 
3 315 9 451 12 155 12 33 
4 389 11 325 9 121 8,5 28,5 
5 210 6 126 5 75 5 16 
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6 136 2 118 4 49 2,5 8,5 
7 178 3,5 227 8 101 6 17,5 
8 228 7 98 3 49 2,5 12,5 
9 240 8 205 7 142 10,5 25,5 

10 113 1 88 1,5 45 1 3,5 
11 178 3,5 194 6 55 4 13,5 
12 321 10 349 12 121 8,5 30,5 

            Total 236 
 

Let S be the sum of squares of the Rj’s deviances from the average of the Rj ’s. Here, Rj is 

the sum of the ranks of the k repeated measurements allocated to each block (in Example 

10 it was patients). 

 𝑆𝑆 = ∑ (𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1 −

∑ 𝑂𝑂𝑗𝑗𝑛𝑛
𝑗𝑗=1

𝑛𝑛
)2  = (n - 1) Var (Ri) .                                                        (43) 

The coefficient of concordance is then: 

𝑊𝑊 = 𝑆𝑆
𝑘𝑘2(𝑛𝑛3−𝑛𝑛)/12

 ,                                                                                              (44) 

which takes on a value between 0 en 1, because the denominator of (44) is the maximum 

value that S can attain if there is complete concordance in the ranks of all k the repeated 

ranks. 

 

Example 10 (continued) 

The average of the Rj ‘s is 236 / 12 = 19,67, so that                                                                  

S = (13,5 – 19,67)2 + (33,5 – 19,67)2 + .... + (30,5 – 19,67)2 = 1130,17. 

𝑊𝑊 = 1130,17
32(123−12)/12

 = 1130,17 / 2717 = 0,88. 

 

3.3.1 Interpretation of W 

Suppose the average of the Spearman rank correlations of all possible pairs of repeated 

measurements is indicated by rsav. Then, according to Siegel (1956), there exists the 

following linear relation between W and rsav : 

𝑟𝑟𝑠𝑠𝑎𝑎𝑣𝑣 = 𝑘𝑘𝑘𝑘−1
𝑘𝑘−1

,                                                                                                       

so that   𝑊𝑊 = (𝑘𝑘−1)𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠+1
𝑘𝑘

 .                                                                                 (45) 
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Guideline values for Spearman rank correlations (rs) are given in subsection 3.1, which could 

also be used for rsav , seeing that it is based on rs . Because W is according to (45) a function 

of rsav and k, guideline values for W can be obtained from Table 6. 

 

Table 6:  W as function of rsav  and number of repeated measurements k 

                                                                      k 

 
  

2 3 4 5 7 10 

rsav 

0.00 0.50 0.33 0.25 0.20 0.14 0.10 

0.10 0.55 0.40 0.33 0.28 0.23 0.19 

0.20 0.60 0.47 0.40 0.36 0.31 0.28 

0.30 0.65 0.53 0.48 0.44 0.40 0.37 

0.40 0.70 0.60 0.55 0.52 0.49 0.46 

0.50 0.75 0.67 0.63 0.60 0.57 0.55 

0.60 0.80 0.73 0.70 0.68 0.66 0.64 

0.70 0.85 0.80 0.78 0.76 0.74 0.73 

0.80 0.90 0.87 0.85 0.84 0.83 0.82 

0.90 0.95 0.93 0.93 0.92 0.91 0.91 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

For increasing values of k and larger values of  rsav , the values of W become closer and 

closer to those of rsav and can thus be interpreted in the same way as rsav or rs . For k = 2, rsav 

= rs, whose values differ a lot from W for smaller values of rs. In the table, the guideline 

values of small, medium and large effect for W are highlighted in grey. In Example 13, W = 

0,88 and according to Table 6, this can be viewed as a large effect (that is more or less in 

concordance with rsav = 0,8).  

Take note that with 0 ≤ W ≤ 1, the relationship (45) is only valid for rsav > -1 / (k - 1); what it 

amounts to in practice is that for larger values of k, one can only view positive and smaller 

negative values of rsav. 

 

3.3.2 Confidence interval for population W  
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 According to Siegel (1956), k(n – 1)𝑊𝑊�  (for n > 7) has a non-central chi-square distribution 

with  n - 1 degrees of freedom and non-centrality parameter  nsp = k(n - 1)W, with 𝑊𝑊�  the 

estimator of W from a random sample. As in subsection 2.2.2 for w, it is now possible to first 

determine (by means of a computer program) an approximate 100(1 – α)% CI with lower and 

upper bounds (L, U) for nsp; then, W’s CI is given by ( 𝐿𝐿
𝑘𝑘(𝑛𝑛−1)

, 𝑈𝑈
𝑘𝑘(𝑛𝑛−1)

).  Once again, it can be 

calculated by means of SAS’s CI_w or with the Excel spreadsheet (as in subsection 2.2). 

Example 10 (continued):   

Here, 𝑊𝑊�  = 0,88, k = 3 and n = 12; it follows that the degrees of freedom = 11, so that the 

95% CI for nsp: (3,94; 42,33), from which the CI for W follows as (0,12; 1,28). The upper 

bound can be taken as 1,0, which still gives a very wide interval. With a 95% probability, W 

can be as low as 0,12 – thus a small effect.                                                                                                                           

 

4. Two groups compared with interval and ordinal scale measurements   

In Steyn (2012: Chapter 4), we have already viewed the parametric effect sizes that are 

based on standardised differences between two means. However, there are also effect sizes 

that can be used after non-parametric tests have been applied. Usually, non-parametric tests 

are applied to interval scale measurements when normality of data cannot be assumed and 

samples are small. With ordinal measurements, it is also more appropriate to use non-

parametric methods when dealing with small samples. First, the case of two independent 

groups is viewed and thereafter, that of dependent groups. 

 

4.1 Two independent groups – the Mann-Whitney test 

This test is based on the statistic U: the number of observations from the first group (A) 

(population or a sample thereof), which is smaller than the number of observations from the 

second group (B). The value of U is usually obtained by the execution of packages such as 

SPSS, Statistica or SAS. The Mann-Whitney (or Wilcoxon two-sample) statistic is then: 

𝑍𝑍 = 𝑈𝑈−𝑚𝑚𝑠𝑠
𝑠𝑠𝑠𝑠

 ,                                                                                                         (46) 

where 𝑚𝑚𝑈𝑈 = 𝑛𝑛𝐴𝐴𝑛𝑛𝐵𝐵
2

,  𝑛𝑛𝐴𝐴 and 𝑛𝑛𝐵𝐵 are the group sizes, and  

𝑏𝑏𝑈𝑈 = �𝑛𝑛𝐴𝐴𝑛𝑛𝐵𝐵(𝑛𝑛𝐴𝐴+𝑛𝑛𝐵𝐵+1)
12

.                                                                                         (47)  
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If the smallest of 𝑛𝑛𝐴𝐴 and 𝑛𝑛𝐵𝐵 > 20, it holds true that under the null hypothesis of populations A 

and B having the same distribution, Z is approximately standard normally distributed. 

 

4.1.1 Effect sizes  

(a)  𝑝𝑝𝐴𝐴,𝐵𝐵 = 𝑈𝑈
𝑛𝑛𝐴𝐴𝑛𝑛𝐵𝐵

 ,                                                                                                (48) 

that is, the probability that a randomly chosen observation from population B will be larger 

than a randomly chosen observation from population A. If working with samples, 

𝑝𝑝𝐴𝐴,𝐵𝐵  becomes the proportion �̂�𝑝𝐴𝐴,𝐵𝐵 and this serves as an estimator for the probability (see 

Pautz et.al., 2018). In Steyn (2012: subsection 8.5), 𝑝𝑝𝐴𝐴,𝐵𝐵 is given as AUC, the area under the 

ROC curve. 

(b) According to Pautz et.al. (2018),  

𝑟𝑟 = |𝑍𝑍|

√𝑛𝑛𝐴𝐴+𝑛𝑛𝐵𝐵
 .                                                                                                       (49) 

The interpretation of r is the same as w (see subsection 2.2), because 𝑍𝑍2, based on 𝑛𝑛𝐴𝐴 + 𝑛𝑛𝐵𝐵 

observations, has a chi-square distribution with 1 degree of freedom, so that  𝑟𝑟 = � 𝑍𝑍2

𝑛𝑛𝐴𝐴+𝑛𝑛𝐵𝐵
 .  

Thus, as with w, we take r = 0,1 (small effect), r = 0,3 (medium effect), and r = 0,5 (large 

effect) as guidelines again. 

 

4.1.2  Confidence intervals in samples 

(a)  According to Pautz et.al. (2018), an approximate 100(1- α)% CI for 𝑝𝑝𝐴𝐴,𝐵𝐵 is given by: 

�̂�𝑝𝐴𝐴,𝐵𝐵 ± 𝑧𝑧𝛼𝛼/2 �𝑉𝑉��̂�𝑝𝐴𝐴,𝐵𝐵� ,                                                                                        (50)                                                                                   

where   

𝑉𝑉��̂�𝑝𝐴𝐴,𝐵𝐵� = �̂�𝑝𝐴𝐴,𝐵𝐵�1 − �̂�𝑝𝐴𝐴,𝐵𝐵� �1 + 𝑛𝑛𝐴𝐴
∗ (1−𝑝𝑝�𝐴𝐴,𝐵𝐵)
2−𝑝𝑝�𝐴𝐴,𝐵𝐵

+ 𝑛𝑛𝐵𝐵
∗ 𝑝𝑝�𝐴𝐴,𝐵𝐵

1+𝑝𝑝�𝐴𝐴,𝐵𝐵
� /𝑛𝑛𝐴𝐴𝑛𝑛𝐵𝐵,                                   (51) 

with  𝑛𝑛𝐴𝐴∗ = 𝑛𝑛𝐴𝐴 − 1 and 𝑛𝑛𝐵𝐵∗ = 𝑛𝑛𝐵𝐵 − 1.  

(b)  An approximate 100(1- α)% CI for population r : 

𝑟𝑟 ± 𝑧𝑧𝛼𝛼/2 

√𝑛𝑛𝐴𝐴+𝑛𝑛𝐵𝐵
 .                                                                                                      (52) 
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The Excel spreadsheet can also be used to calculate these effect sizes as well as their 

confidence intervals. 

Example 11 

Two random samples with a size of 12 persons each were taken from populations A and B; 

their counts for a test were then determined. The table underneath provides the counts:   

A:  40 30 25 29 37 43 25 27 30 35 39 42 
 

B:  44 41 34 35 40 44 39 39 45 44 46 32 
 

 

To determine U, each value in group B is compared with each one in group A (or the other 

way round); the values that are smaller are then counted. In this way, for example, the first 

value of Group B, namely 44, is not smaller than any other counts in group B and the second 

value, 41, is smaller than 42 and 43. All the 12 x 12 combinations are examined similarly. 

This produces U = 29, so that 

 �̂�𝑝𝐴𝐴,𝐵𝐵 = 29
12 × 12

 = 0,2, whereas 

 𝑉𝑉��̂�𝑝𝐴𝐴,𝐵𝐵� = (0,2 × 0,8)[1 + 11 × 0,8 /1,8 + 11 × 0,2  / 1,2 ]/144 = 0,0086. 

Thus, the approximate 95% CI for 𝑝𝑝𝐴𝐴,𝐵𝐵:  0,2 ± 1,96√0,0086  = (0,02; 0,38). 

 The approximate probability that the counts of population B are smaller than those of 

population A is 0,2, but can vary between more or less 0 and 0,4 with a 95% probability. 

(b)  𝑍𝑍 = |29−72|
�12 ×12 ×25/12

= 43
17,3

= 2,49,  

with  𝑟𝑟 = 2,49
√24

= 0,51,  

and 95% CI for population value of r : 0,51 ± 1,96
√24

= (0,11; 0,91). 

The population r is estimated at 0,51 (large effect), but as a result of small samples, it can 

vary between 0,11 and 0,91 with a 95% probability. 
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4.2  Dependent groups – The paired samples Wilcoxon test 

Here, interval or ordinal scale observations are obtained on dependent pairs, for example on 

persons before and after a certain intervention. Consider the following example from the 

physiotherapy field: 

Example 12 (Pautz et.al., 2018): 

In a sample of 29 persons, measurements were taken on each one’s L4[right] and L4[left] 

muscles. The first three columns of the following table render the measurements: 

  L4 
[right] 

L4 
[left]  Differences 

Positive 
sign (1) 

Rank 
positives  Person 

Negative 
sign (0) 

1 601 592 9 1 7 
2 915 984 -69 0   
3 651 670 -19 0   
4 626 718 -92 0   
5 754 743 11 1 8 
6 673 654 19 1 10.5 
7 678 679 -1 0   
8 769 776 -7 0   
9 885 736 149 1 28 

10 659 805 -146 0   
11 694 585 109 1 22 
12 860 750 110 1 23 
13 793 801 -8 0   
14 796 800 -4 0   
15 918 917 1 1 2 
16 642 641 1 1 2 
17 979 1090 -111 0   
18 963 935 28 1 13 
19 738 821 -83 0   
20 780 605 175 1 29 
21 740 835 -95 0   
22 829 948 -119 0   
23 324 373 -49 0   
24 868 988 -120 0   
25 690 648 42 1 14 
26 564 661 -97 0   
27 587 602 -15 0   
28 461 439 22 1 12 
29 860 787 73 1 17 

   
    

The differences between the two measurements on each person are indicated in the fourth 

column, whereas the sign of the difference is indicated in column 5 by 1 (positive) and 0 



45 
 

(negative). The absolute differences (thus without the sign) are arranged from small to large 

and ranks 1 to 29 are awarded to them (at equal values or ties, the average of ranks 

competing for them is used, e.g., the values 19 that compete for ranks 10 and 11 both 

receive 10,5 as rank). Column 6 only gives the ranks of positive differences.  

The number of persons with positive differences (i.e., the total of column 5) is 13. To test the 

null hypothesis that in the population, half of the persons’ L4[right] values are larger than 

their L4[left] values, the sign test with n = 29 and number of successes = 13 can be used. On 

the example’s data, the null hypothesis cannot be rejected against the one-sided alternative 

that the proportion is smaller than 0,5 (p = 0,13). 

The test statistic of the paired samples Wilcoxon test is:  

𝑍𝑍 =  𝑆𝑆+−𝑛𝑛(𝑛𝑛+1)/4
�𝑛𝑛(𝑛𝑛+1)(2𝑛𝑛+1)/24

 ,                                                                                 (53) 

with  𝑆𝑆+ = sum of the positive ranks. 

Example 12 (continued): 

Now, 𝑆𝑆+ =187,5 (total of column 6 in the table above, so that               

        𝑍𝑍 =  187,5−29 ×30/4
�29 ×30 ×59/24

   = -0,65 (p = 0,26, one-sided). 

4.2.1 Effect sizes 

(a)  According to Pautz et.al. (2018), the probability that the first measurement is larger than 

the second one becomes 

𝑃𝑃𝑆𝑆𝑎𝑎𝑒𝑒𝑝𝑝 =  𝑛𝑛+
𝑛𝑛∗

 ,                                                                                               (54) 

where  𝑛𝑛+  gives the number of positive differences between the first and second 

measurements, whereas 𝑛𝑛∗ gives the number of pairs with differences (0-differences are 

thus excluded). 

(The notation is due to Grissom & Kim, 2012, who use 𝑃𝑃𝑆𝑆𝑎𝑎𝑒𝑒𝑝𝑝  to indicate “Probability of 

Superiority of dependent pairs”.)   

Example 12 (continued): 

Because it is a sample drawn from a population, the estimated probability that a person’s 

L4[right] value is larger than the L4[left] value is the following:  

𝑃𝑃𝑆𝑆�𝑎𝑎𝑒𝑒𝑝𝑝 =  13
29

 =  0,45.  
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(b) As with the Mann-Whitney test, the normal approximation of the Wilcoxon test (usually 

when n > 25) can be used to give the following effect size: 

𝑟𝑟 = |𝑍𝑍|
√𝑛𝑛

 .                                                                                                 (55) 

Example 12 (continued): 

Now, Z = -0,65, so that 𝑟𝑟 = 0,65
√29

  = 0,12, which gives a small effect. This compares well with 

the interpretation of the estimated probability 𝑃𝑃𝑆𝑆�𝑎𝑎𝑒𝑒𝑝𝑝  = 0,45, which does not differ much from 

0,5. 

 

4.2.2  Confidence intervals in samples 

(a)  With n large, the usual normal approximation of proportions holds true and the  

100(1- α)% CI for 𝑃𝑃𝑆𝑆𝑎𝑎𝑒𝑒𝑝𝑝  is: 

𝑃𝑃𝑆𝑆�𝑎𝑎𝑒𝑒𝑝𝑝 ± 𝑧𝑧𝛼𝛼/2 �
𝑃𝑃𝑆𝑆�𝑑𝑑𝑑𝑑𝑑𝑑 (1−𝑃𝑃𝑆𝑆�𝑑𝑑𝑑𝑑𝑑𝑑 )

𝑛𝑛∗
 .                                                                  (56) 

The Excel spreadsheet can also be used to calculate these effect sizes as well as their 

confidence intervals. 

Example 12 (continued): 

The 95%   for 𝑃𝑃𝑆𝑆𝑎𝑎𝑒𝑒𝑝𝑝 , thus 0,45 ± 1,96�0,45(1−0,45)
29

 = 0,45 ± 0,18 = (0,27; 0,63). Therefore, no 

finding can be made concerning the population probability (i.e., that the L4[right] value is 

larger than the L4[left] value) since it lies between 0,27 and 0,63 with a 95% probability 

(here, lying around 0,5). 

 

(b)  The 100(1- α)% CI for the population value of r is (as in subsection 4.1) the following for 

n large: 

 𝑟𝑟 ± 𝑧𝑧𝛼𝛼/2 

√𝑛𝑛∗
 .                                                                                               (57) 

Example 12 (continued): 

The 95% CI for the population value of r :  
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0,12 ± 1,96
√29

 = (-0,24; 0,48); take it as (0; 0,48), because negative values of r does not make 

sense. The effect size of the population value of r can thus vary with a 95% probability 

between 0 and 0,48, which is meaningless and does not indicate any effect.  

 

5.  More than two groups compared 

As with two groups, non-parametric tests can be applied to compare three or more groups. 

This is usually done when groups are small and interval scale (continuous) measurements 

are not necessarily normally distributed. Such tests are also applied to small groups with 

ordinal or discrete measurements. As in Section 4, we distinguish between independent and 

dependent groups again. 

 

5.1  Independent groups – the Kruskal-Wallis test   

Example 13 (Siegel,1956)  

Three groups (types) of teachers are measured on an authoritarianism scale (A-scale). The 

following table gives the A-scale values, as well as the ranks, of each group. Take note that 

ranks are awarded to the pooled data. 

Educationally 

oriented 

(Group 1) 

Ranks of  

Group 1 

Administratively 

oriented 

 

(Group 2) 

Ranks of  

Group 2 

Administrative 

teachers 

(Group 3) 

Ranks  

of  

Group 3 

  96 4   82   2 115   7 

128 9 124   8 149 13 

  83 3 132 10 166 14 

  61 1 135 11 147 12 

101 5 109   6   

 R1 = 22  R2 = 37  R3 = 46 

 

Where a one-way analysis of variance (ANOVA) tests  whether the population from which 

random samples are drawn has the same means (see Steyn, 2012: Chapter 6), the null 

hypothesis will now be tested to see whether the probability is 50% that a randomly chosen 

teacher from Population 1 has a larger value (on the A -scale) than one who was chosen 

from Population 2; the same applies to Population 2 versus 3 and 1 versus 3. 
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Here, the Kruskal-Wallis test is used with test statistic 

𝐻𝐻 = 12
𝑁𝑁(𝑁𝑁+1)

∑ 𝑂𝑂𝑖𝑖
2

𝑛𝑛𝑖𝑖
𝑘𝑘
𝑖𝑖=1 − 3(𝑁𝑁 + 1),                                                                        (58)   

where 𝑛𝑛𝑖𝑖 is the i-th group from k groups’ sample size and 𝑁𝑁 = ∑ 𝑛𝑛𝑖𝑖𝑘𝑘
𝑖𝑖=1 , whereas Ri  is the sum 

of ranks in the i-th group. 

Example 13 (continued): 

n1 = n2 = 5 and n3 = 4, so that N = 14. From the table, it follows that:  R1 = 22, R2 = 37 and R3 

= 46, so that  

𝐻𝐻 =
12

14 × 15
�
222

5
+

372

5
+

462

4
� − 3 × 15 = 6,4. 

For large samples under the null hypothesis, H is approximately chi-square distributed with  

k – 1 degrees of freedom, so that P = 0,04; consequently, the null hypothesis is rejected on 

a significance level of 5%.   

 

5.1.1 Effect sizes 

(a) The following is represented similarly to the effect sizes of Section 2: 

 𝑤𝑤𝑀𝑀 = �𝑀𝑀
𝑁𝑁

  ,                                                                                                 (59) 

with interpretation as before, namely   

• small effect:         𝑤𝑤𝑀𝑀 = 0,1; 

• medium effect:     𝑤𝑤𝑀𝑀 = 0,3; 

• large effect:          𝑤𝑤𝑀𝑀 = 0,5.  

Example 13 (continued): With H = 6,4  and  N = 14, the effect size becomes                 

𝑤𝑤𝑀𝑀 = �6,4
14

 = 0,68, which can be considered to be a large effect. 

 

(b) As with the one-way ANOVA (see Steyn, 2012: Chapter 6), there also exists an eta-

square here (η2), the proportion of the total variance of the dependent variable that can be 

ascribed to the independent variable. In Example 13, it is the proportion of the variance of 

the measurements (in the A-scale) that can be ascribed to the three groups of teachers. 

According to Tomczak and Tomczak (2014), this effect size is  

𝜂𝜂𝑀𝑀2 = 𝑀𝑀−𝑘𝑘+1
𝑁𝑁−𝑘𝑘

 .                                                                                               (60) 
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Steyn (2012: Chapter 6) states that then, the guideline values for 𝜂𝜂𝑀𝑀2  is:  

• small effect:          𝜂𝜂𝑀𝑀2 = 0,01; 

• medium effect:      𝜂𝜂𝑀𝑀2 = 0,06; 

• large effect:           𝜂𝜂𝑀𝑀2 = 0,14. 

 

Example 13 (continued): 𝜂𝜂𝑀𝑀2 = 6,4−3+1
14−3

= 0,4, a large effect – 40% of the total variance of the 

A-scale measurements can be ascribed to the three groups.  
 

5.1.2  Confidence interval for population  𝑤𝑤𝑀𝑀 

For large samples, the approximation of the chi-square distribution with  k – 1 degrees of 

freedom for H is good. As before (see, e.g., subsection 2.2), a 100(1- α)% CI can be 

determined by using the non-central chi-square distribution with the aid of the Excel 

program.  

In Example 13, it is not possible to obtain a lower boundary for the confidence interval, as 

the samples are so small. Consider therefore another example: 

Example 14: 

For three samples of 12 persons each, the totals of ranks with regard to a certain aspect 

were determined as R1 = 139, R2 = 200 and R3 = 327; N = 12 × 3 = 36, so that 

𝐻𝐻 =
12

36 × 37
�
1392

12
+

2002

12
+

3272

12
� − 3 × 37 = 13,8 (𝑃𝑃 = 0,001).  

𝑤𝑤𝑀𝑀 = �13,8
36

= 0,62, whereas the 95% CI proves to be (0,26; 0,93) from calculations by the 

Excel program. This means there are highly significant differences between the groups with 

a large effect; however, with a 95% probability, they can also be as low as 0,26 – thus, a 

medium effect. 

 

5.2  Dependent groups – repeated measurements: the Friedman test 

As with the paired samples test of Wilcoxon (in subsection 4.2) with pairs of observations on 

blocks (e.g., persons or objects), the case of three or more repeated measurements on each 

block is now considered. When the number of blocks (or persons) are few and normality of 

interval scale or ordinal measurements does not necessarily hold true, ranks are determined 

at each block and the Friedman test is applied to test the null hypothesis that each of the 

repeated measurements on the blocks comes from the same population. 
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Example 15   

In Example 10, subsection 3.3, 12 patients were subjected to three treatments (repeated 

measurements) and the ranks thereof on each of the 12 patients (blocks) are given in the 

following table: 

Patient Treatment 

1 

Ranks 1 Treatment 

2 

Ranks 2 Treatment 

3 

Ranks 3 

1 209 3   88 1 109 2 

2 412 3 388 2 142 1 

3 315 2 451 3 155 1 

4 389 3 325 2 121 1 

5 210 3 126 2   75 1 

6 136 3 118 2   49 1 

7 178 2 227 3 101 1 

8 228 3   98 2   49 1 

9 240 3 205 2 142 1 

10 113 3 88 2   45 1 

11 178 2 194 3   55 1 

12 321 2 349 3 121 1 

Totals - 32 - 27 - 13 

 

The Friedman test statistic for testing the null hypothesis is: 

𝐹𝐹 = 12
𝑛𝑛𝑘𝑘(𝑘𝑘+1)

∑ 𝐾𝐾𝑖𝑖2𝑘𝑘
𝑖𝑖=1 − 3𝑛𝑛(𝑘𝑘 + 1),                                                                       (61) 

where k is the number of repeated measurements and n the number of blocks, whereas Ki  is 

the i-th (repeated) measurement’s total of ranks (i.e., the sum of ranks in the i-th treatment in 

Example 15).  

For n large, it holds true that under the null hypothesis F is approximately distributed 

according to a chi-square distribution with k – 1 degrees of freedom. 

Example 15 (continued): 

The three totals of the treatments’ ranks are K1 = 32, K2 = 27; K3 = 13, k = 3; and n = 12, so 

that 

𝐹𝐹 =
12

12 × 3 × 4
(322 + 272 +  132)− 3 × 12 × 4 = 16,17. 
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The null hypothesis is rejected (P < 0,001), so that the population distributions of the three 

treatments are different. 

 

5.2.1  Effect size 

The following effect size is used, similar to previous sections where the test statistics under 

the null hypotheses are approximately chi-square distributed:  

𝑤𝑤𝐹𝐹 = �𝐹𝐹
𝑛𝑛
 .                                                                                                     (62) 

Then, the guideline values for the interpretation of 𝑤𝑤𝐹𝐹 is 𝑤𝑤𝐹𝐹 = 0,1 – small effect; 𝑤𝑤𝐹𝐹 = 0,3 – 

medium effect; and 𝑤𝑤𝐹𝐹 = 0,5 – large effect. 

Example 15 (continued):  𝑤𝑤𝐹𝐹 = �16,17
12

= 1,17, a very large effect. 

 

5.2.2  Confidence interval for population wF   

The chi-square statistic F has approximately a non-central chi-square distribution with k - 1 

degrees of freedom and non-centrality parameter of nsp = nwF. As in subsection 2.1.4 for φ, 

it is now possible to determine (by means of a computer program) an approximate  

100(1 – α)% CI with lower and upper bounds (L, U) for nsp; then, the CI for the bounds of wF 

is (�𝐿𝐿/𝑛𝑛 ,�𝑈𝑈/𝑛𝑛). The Excel spreadsheet can be used. 

Example 15 (continued): With F = 16,17, degrees of freedom = 2 and n = 12, CI_w gives 

the 95% CI for nsp as (3,53; 34,55), from which follows the CI for wF as (0,54; 1,70). With a 

95% probability, even the lower bound of 0,54 is a large effect.  
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