StatCon 2021 On-line Workshop
19 November, 2021 – 9 December, 2021
Videos and Slideshows
Leonard Santana - North-West University, Potchefstroom
WORKSHOP TITLE: A beginner's guide to the bootstrap :
Chapter 0: An introduction to Monte Carlo methods
- Introduction to Monte Carlo methods
- Approximating the expected value of a statistic
- Approximating the standard error of a statistic
- Approximating probabilities
- Approximating quantiles
- When do we need to use Monte Carlo methods, and why is it being discussed in a course on the bootstrap?
- R tutorial: Generating data using the inverse transform method
- R tutorial: Example of Monte Carlso approximated expected values, standard errors, probabilities, and quantiles
Chapter 1: An introduction to the bootstrap
- An introduction to the bootstrap
- Introducing notation used throughout
- The empirical distribution function (EDF) and its use in the bootstrap (Bootstrap.Chapter01.03.E.D.F.(A)-1.m4v, and Bootstrap.Chapter01.04.E.D.F.(B)-1.m4v, and Bootstrap.Chapter01.05.E.D.F.(C).Drawing.Samples-1.m4v)
- The plug-in principle (Bootstrap.Chapter01.06(A).Plugin.Principle-1.m4v, and Bootstrap.Chapter01.06(B).Plugin.Principle.Examples-1.m4v)
- The general bootstrap algorithm
- When is this computer intensive bootstrap algorithm not necessary? An example with the sample mean
- The double bootstrap: estimating the standard error of the bootstrap estimate of standard error
- Example of situations where the bootstrap does not work
- Introduction
- The nonparametric bootstrap: recap
- The parametric bootstrap and example (Bootstrap.Chapter02.03.Fpar-3.m4v, and Bootstrap.Chapter02.04.Fpar.Example-4.m4v)
- The semi-parametric bootstrap and examples (Bootstrap.Chapter02.05.Fsemi-5.m4v, and Bootstrap.Chapter02.06.Fsemi.Model.Based.Method.&.Example-6.m4v, and Bootstrap.Chapter02.07.Fsemi.Example.Where.E(X)=10-1.m4v, and Bootstrap.Chapter02.08.Fsemi.Example.Symmetry-1.m4v)
- The smoothed bootstrap and kernel distribution estimation (Bootstrap.Chapter02.09.Smoothing.&.Kernel.Density-1.m4v, and Bootstrap.Chapter02.10.Fh.Kernel.Distribution.Estimator-1.m4v, and Bootstrap.Chapter02.11.Fh.Drawing.Samples-1.m4v, and Bootstrap.Chapter02.12.Fh.Correction.To.Drawing.Samples-1.m4v, and Bootstrap.Chapter02.13.Fh.Example-1.m4v)
Chapter 6: Regression and the bootstrap
- Introduction and review of regression concepts
- The residuals-based (or model-based) approach to bootstrap regression (Bootstrap.Chapter06.02.Bootstrap.Residuals.Approach.A-1.m4v, and Bootstrap.Chapter06.03.Bootstrap.Residuals.Approach.B-1.m4v)
- The paired or cases approach to bootstrap regression
- The wild bootstrap
Workshop slides
Bojana Milosevic - University of Belgrade, Serbia
Characterization based goodness of fit tests - construction and properties
Videos:
- Motivation and Characterizations
- Theory of U statistics
- Test I_n
- Tests D_n and W_n
- Laplace transform based tests and others
- Tests based on independence type characterizations
- Tests based on functional equations
- Summary
Workshop slides